
MINI CHILLER MUENR-H12

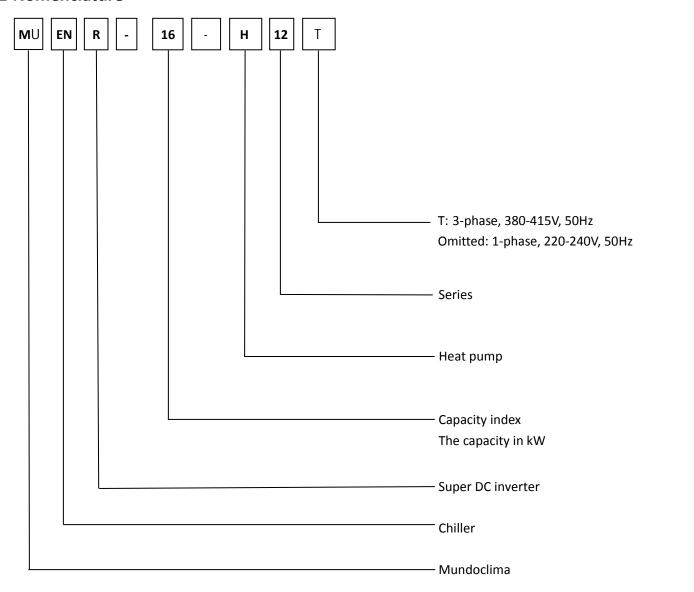
Service Manual

www.mundoclima.com

CONTENTS

Part	1	General Information	3
Part	2	Component Layout and Refrigerant Circuits	5
Part	3	Control	11
Part	4	Diagnosis and Troubleshooting	23

Part 1 General Information

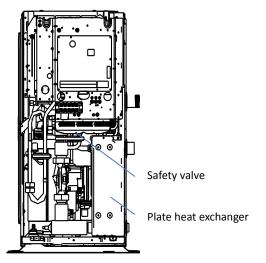

1 Product lineup	4
•	
2 Nomenclature	4

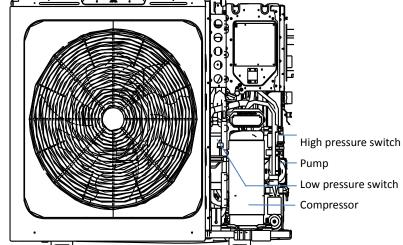
1 Product lineup

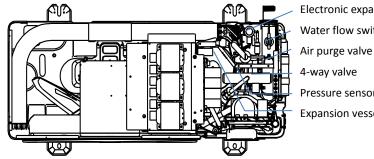
Model	Power supply(V/Ph/Hz)	Refrigerant	Appearance
MUENR-05-H12	220-240/1 /50	R32	
MUENR-07-H12	220-240/1 /50	R32	
MUENR-09-H12	220-240/1 /50	R32	2000
MUENR-12-H12	220-240/1 /50	R32	
MUENR-14-H12	220-240/1 /50	R32	100
MUENR-16-H12	220-240/1 /50	R32	i de
MUENR-12-H12T	380-415/3/50	R32	Rag
MUENR-14-H12T	380-415/3/50	R32	
MUENR-16-H12T	380-415/3/50	R32	

2 Nomenclature

Part 2


Component Layout and Refrigerant Circuits

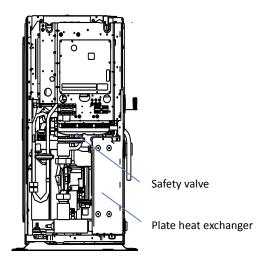

1 Layout of Functional Components	6
2 Piping Diagrams	9

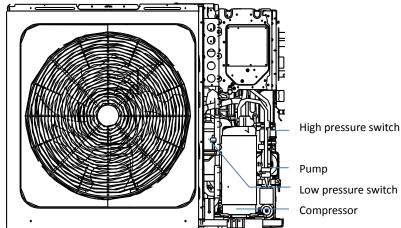

MUND CLIMA®

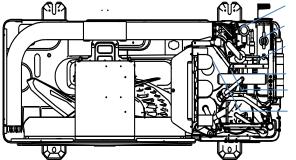
1 Layout of Functional Components

MUENR-05-H12 / MUENR-07-H12 / MUENR-09-H12

Electronic expansion valve


Water flow switch

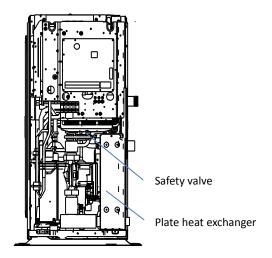

Pressure sensor

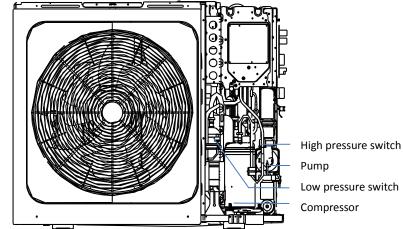

Expansion vessel

MUENR-12-H12 / MUENR-14-H12 / MUENR-16-H12

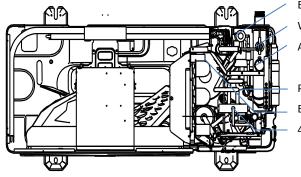
Electronic expansion valve
Water flow switch

Air purge valve


4-way valve


Pressure sensor

Expansion vessel


MUND CLIMA®

MUENR-12-H12T /MUENR-14-H12T / MUENR-16-H12T

Low pressure switch Compressor

Electronic expansion valve

Water flow switch

Air purge valve

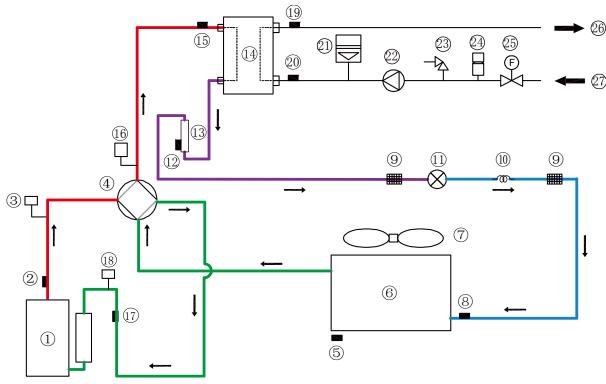
Pressure sensor

Expansion vessel

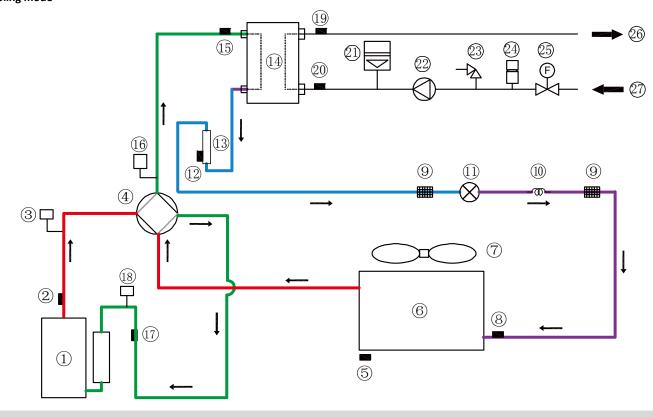
4-way valve

2 Piping Diagrams

Refrigerant piping graphic example:


High temperature, high pressure gas

High temperature, high pressure liquid


Low temperature, low pressure gas

Low temperature, low pressure gas liquid mixture

Heating and DHW mode

Cooling mode

Legend					
1	Compressor	15	Refrigerant gas pipe temperature sensor(T2B)		
2	Discharge temperature sensor(Tp)	16	Pressure sensor		
3	High pressure switch	17	Suction temperature sensor(Th)		
4	4-way valve	18	Low pressure switch		
5	Ambient temperature sensor(T4)	19	Water outlet temperature sensor(Tw_out)		
6	Air side heat exchanger	20	Water inlet temperature sensor(Tw_in)		
7	Fan	21	Expansion vessel		
8	Air side heat exchanger temperature sensor(T3)	22	Pump		
9	Strainer	23	Pressure relief valve		
10	Capillary	24	Air purge valve		
11	Electronic expansion valve	25	Water flow switch		
12	Refrigerant liquid pipe temperature sensor(T2)	26	Water outlet		
13	Accumulator cylinder	27	Water inlet		
14	Plate heat exchanger				

Key components:

1. Accumulator cylinder:

Stores liquid refrigerant and oil to protect compressor from liquid hammering.

2. Electronic expansion valve (EXV):

Controls refrigerant flow and reduces refrigerant pressure.

3. Four-way valve:

Controls refrigerant flow direction. Closed in cooling mode and open in heating mode. When closed, the air side heat exchanger functions as a condenser and water side heat exchanger functions as an evaporator; when open, the air side heat exchanger function as an evaporator and water side heat exchanger function as a condenser.

4. High and low pressure switches:

Regulate refrigerant system pressure. When refrigerant system pressure rises above the upper limit or falls below the lower limit, the high or low pressure switches turn off, stopping the compressor.

5. Air purge valve:

Automatically removes air from the water circuit.

6. Pressure relief valve:

Prevents excessive water pressure by opening at 43.5 psi (3 bar) and discharging water from the water circuit.

7. Expansion vessel:

Balances water system pressure. (Expansion vessel volume: 5L)

8. Water flow switch:

Detects water flow rate to protect compressor and water pump in the event of insufficient water flow.

9. Water pump:

Circulates water in the water circuit.

Part 3 Control

1 Stop operation	12
2 Standby control	12
3 Startup control	13
4 Normal operation control	14
5 Protection control	16
6 Special control	19

1 Stop operation

The stop operation occurs for one of the following reasons:

- 1. Abnormal shutdown: in order to protect the compressors, if an abnormal state occurs the system makes a stop with thermo off operation and an error code is displayed on the outdoor unit PCB digital displays and on the user interface.
- 2. The system stops when the set temperature has been reached.

2 Standby control

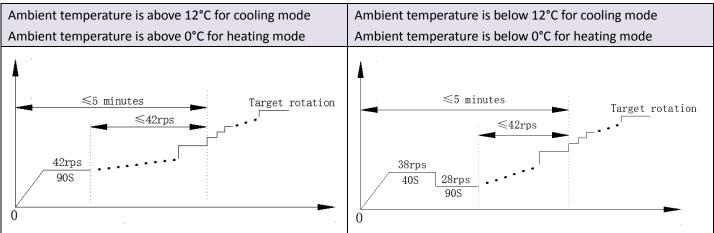
2.1 Crankcase heater control

The crankcase heater is used to prevent refrigerant from mixing with compressor oil when the compressors are stopped. The crankcase heater is controlled according to outdoor ambient temperature and the compressor on/off state. When the outdoor ambient temperature is above 8°C or the compressor is running, the crankcase heater is off; when the outdoor ambient temperature is at or below 8°C and either the compressor has been stopped for more than 3 hours or the unit has just been powered-on (either manually or when the power has returned following a power outage), the crankcase heater turns on.

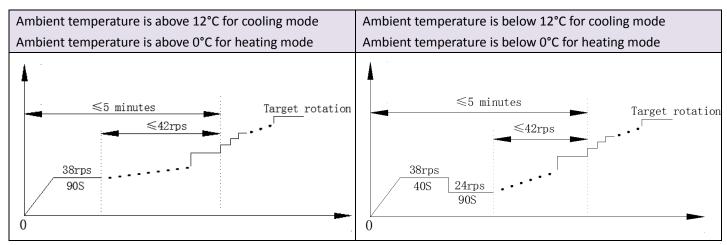
2.2 Water pump control

When the outdoor unit is in standby, the internal and external circulator pumps run continuously.

3 Startup control


3.1 Compressor sdtartup delay control

In initial startup control and in restart control (except in oil return operation and defrosting operation), compressor startup is delayed such that a minimum of the set re-start delay time has elapsed since the compressor stopped, in order to prevent frequent compressor on/off and to equalize the pressure within the refrigerant system. The compressor re-start delays for cooling, heating modes are set on the user interface.


3.2 Compressor startup program

In initial startup control and in re-start control, compressor startup is controlled according to outdoor ambient temperature. Compressor startup follows one of two startup programs until the target rotation speed is reached.

MUENR-05-H12 / MUENR-07-H12 / MUENR-09-H12

MUENR-12-H12 / MUENR-14-H12 / MUENR-16-H12 MUENR-12-H12T / MUENR-14-H12T / MUENR-16-H12T

3.3 Startup control for heating operation

and are talk countries for meaning observation.						
Component	Wiring diagram label	5~16kW	Control functions and states			
Inverter compressor	COMP	•	Compressor startup program selected according to ambient temperature			
DC fan motor	FAN	•	Fan runs at maximum speed			
Electronic expansion valve	EXV	•	Position (steps) from 0 (fully closed) to 480 (fully open), controlled according to outdoor ambient temperature, discharge temperature, suction superheat, compressor speed and refrigerant system pressure			
Four-way valve	4-WAY	•	On			

Mini Chiller Serie H12

3.4 Startup control for cooling operation

Component	Wiring diagram label	5~16kW	Control functions and states	
Inverter compressor	COMP	•	Compressor startup program selected according to ambient temperature	
DC fan motor	FAN	•	Fan run at maximum speed	
Electronic expansion valve	EXV	•	Position (steps) from 0 (fully closed) to 480 (fully open), controlled according to outdoor ambient temperature, discharge temperature, suction superheat, compressor speed and refrigerant system pressure	
Four-way valve	4-WAY	•	Off	

4 Normal operation control

4.1 Normal operation control for heating operation

Component	Wiring diagram label	5~16kW	Control functions and states
Investor compressor			Controlled according to load requirement from temperature set and outlet
Inverter compressor	СОМР	•	water temperature
DC fan motor	FAN	•	Controlled according to outdoor heat exchanger pipe temperature
			Position (steps) from 0 (fully closed) to 480 (fully open), controlled
Electronic expansion valve	EXV	•	according to outdoor ambient temperature, discharge temperature, suction
			superheat, compressor speed, refrigerant system pressure and temperature
Four-way valve	4-WAY	•	On

4.2 Normal operation control for cooling operation

Component	Wiring diagram label	5~16kW	Control functions and states	
Investor compressor			Controlled according to load requirement from temperature set and outlet	
Inverter compressor	COMP	•	water temperature	
DC fan motor	FAN	•	Controlled according to outdoor heat exchanger pipe temperature	
			Position (steps) from 0 (fully closed) to 480 (fully open), controlled	
Electronic expansion valve	EXV	•	according to outdoor ambient temperature, discharge temperature, suction	
			superheat, compressor speed, refrigerant system pressure and temperature	
Four-way valve	4-WAY	•	Off	

4.3 Compressor output control

The compressor rotation speed is controlled according to the load requirement. Before compressor startup, heat pump determines the compressor target speed according to outdoor ambient temperature, leaving water set temperature and actual leaving water temperature and then runs the appropriate compressor startup program. Once the startup program is complete, the compressor runs at the target rotation speed. During operation the compressor speed is controlled according to the rate of change of water temperature, the refrigerant system pressure and temperature.

4.4 Compressor step control

The running speed of six-pole compressors in rotations per second (rps) is one third of the frequency (in Hz) of the electrical input to the compressor motor. The frequency of the electrical input to the compressor motors can be altered at a rate of 1Hz per second.

4.5 Four-way valve control

The four-way valve is used to change the direction of refrigerant flow through the water side heat exchanger in order to switch between cooling and heating operations.

During heating operation, the four-way valve is on; during cooling and defrosting operations, the four-way valve is off.

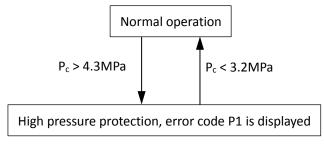
4.6 Electronic expansion valve control

The position of the electronic expansion valve (EXV) is controlled in steps from 0 (fully closed) to 480 (fully open/standby position).

- At power-on:
 - The EXV first closes fully, then moves to the standby position.
 - After the compressor runs, the EXV is controlled according to suction superheat, discharge temperature, pressure and compressor speed.
- When the outdoor unit is in standby:
 - The EXV is at standby position.
- When the outdoor unit stops:
 - The EXV first opens fully and remains for 30 seconds, then closes fully, then moves to the standby position.

4.7 Outdoor fan control

The speed of the outdoor unit fan is adjusted in steps, as shown below


Fan an and inden	Fan speed (rpm)							
Fan speed index	5kW	7kW	9kW	12kW	14kW	16kW		
W1	200	200	200	200	200	200		
W2	250	250	250	250	250	250		
W3	300	300	300	300	300	300		
W4	350	350	350	350	350	350		
W5	400	400	400	400	400	400		
W6	450	450	450	450	450	450		
W7	470	470	470	530	530	530		
W8	530	530	530	600	600	600		
W9	550	550	550	650	650	650		
W10	/	590	590	730	730	730		
W11	/	650	650	780	780	780		
W12	/	/	/	/	820	820		

5 Protection control

5.1 High pressure protection control

This control protects the refrigerant system from abnormally high pressure and protects the compressor from transient spikes in pressure.


Notes:

1. Pc: Discharge pressure

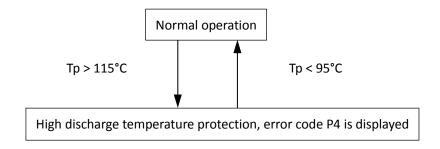
When the discharge pressure rises above 4.3MPa the system displays P1 protection and the unit stops running. When the discharge pressure drops below 3.2MPa, the compressor enters re-start control.

5.2 Low pressure protection control

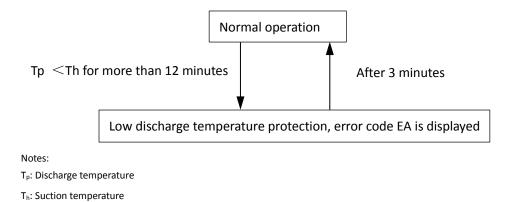
This control protects the refrigerant system from abnormally low pressure and protects the compressor from transient drops in pressure.

Notes:

1. P_e: Suction pressure


When the suction pressure drops below 0.14MPa the system displays P0 protection and the unit stops running. When the suction pressure rises above 0.3MPa, the compressor enters re-start control.

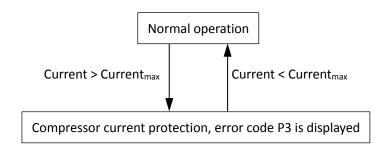
When P0 protection occurs 3 times in 60 minutes, the HP error is displayed. When an HP error occurs, a manual system restart is required before the system can resume operation.



5.3 Discharge temperature protection control

This control protects the compressor from abnormally high temperatures and transient spikes in temperature.

When the discharge temperature rises above 115°C the system displays P4 protection and the unit stops running. When the discharge temperature drops below 95°C, the compressor enters re-start control.



When the discharge temperature is lower than suction temperature for more than 12 minutes after compressor runs, the system displays EA protection and heat pump stops running. After 3 minutes, the compressor enters re-start control automatically.

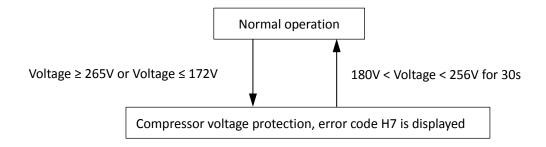
If EA protection occurs 3 times within 2 hours, heat pump cannot be restarted unless it is powered on again.

5.4 Compressor current protection control

This control protects the compressor from abnormally high currents.

Current limitation for heat pump

Model name	MUENR-5(7,9)H12	MUENR-12(14,16)H12 MUENR-12(14,16)H12T			
Current _{max}	18A	30A	14A		


When the heat pump current rises above $Current_{max}$ the system displays P3 protection and the unit stops running. When the heat pump current drops below $Current_{max}$, the compressor enters re-start control.

Mini Chiller Serie H12

5.5 Voltage protection control

This control protects the heat pump from abnormally high or abnormally low voltages.

When the phase voltage of AC power supply is at or above 265V, the system displays H7 protection and the unit stops running. When the phase voltage drops below 265V for more than 30 seconds, the refrigerant system restarts once the compressor re-start delay has elapsed.

When the phase voltage is at or below 172V, the system displays H7 protection and the unit stops running.

When the AC voltage rises to at or more than 180V, the refrigerant system restarts once the compressor re-start delay has elapsed.

5.6 DC Fan motor protection control

This control protects the DC fan motors from strong winds and abnormal power supply. DC fan motor protection occurs when any one of the following conditions are met:

- Fan speed is less than 50rpm for more than 40s after fan operates.
- Fan speed is lower than 50rpm for 3S, during normal operation

When DC fan motor protection control occurs the system displays the H6 error code and the unit stops running. After 3 seconds, the unit restarts automatically.

When H6 protection occurs 10 times in 120 minutes, the HH error is displayed. When an HH error occurs, a manual system restart is required before the system can resume operation.

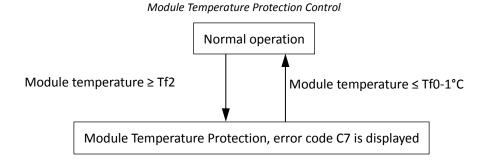
5.7 Water side heat exchanger anti-freeze protection control

This control protects the water side heat exchanger from ice formation.

The water side heat exchanger electric heater is controlled according to outdoor ambient temperature, water side heat exchanger water inlet temperature and outlet temperature.

In cooling mode, if inlet water temperature or leaving water temperature or auxiliary heat source leaving water temperature is below 4°C, heat pump stops and water pump keeps running for 30min. If water temperature is still below 4°C, heat pump turns to heating mode. the anti-freeze protection actions.

In heating standby mode, if ambient temperature is below 3°C and inlet water temperature or leaving water temperature or auxiliary heat source leaving water temperature is below 5°C, heat pump stops and water pump keeps running for 30min. If ambient temperature is still below 3°C and water temperature is still below 5°C, heat pump turns to heating mode. the anti-freeze protection actions; if leaving water temperature is below 2°C, the anti-freeze protection actions.


In heating standby mode, if leaving water temperature is below 2°C, heat pump stops and water pump keeps running for 30min. If water temperature is still below 2°C heat pump turns to heating mode to protect from anti-freezing.

When water side heat exchanger anti-freeze protection occurs the system displays error code Pb and the unit stops running.

5.8 Module temperature protection control

This control protects the module from abnormally high temperatures.

When the module temperature rises at or above Tf2 the system displays C7 protection and the unit stops running. When the module temperature drops at or below Tf0-1, the compressor enters re-start control.

	5-9kW	12-16kW 1ph	12-16kW 3ph
Tf2	81	100	84
Tf0	75	94	78

6 Special control

6.1 Oil return operation

In order to prevent the compressor from running out of oil, the oil return operation is conducted to recover oil that has flowed out of the compressor and into the refrigerant piping. When the oil return operation is being conducted, the refrigerant system main PCB displays code d0.

The oil return operation starts when the following condition occurs:

When the compressor cumulative operating time with running rotation speed less than 42rps reaches 6 hours.

The oil return operation ceases when any one of the following conditions occurs:

- Oil return operation duration reaches 5 minutes.
- Compressor stops.
- Mode change command is received.

Component control during oil return operation in cooling mode.

·	· -		
Component	Wiring diagram label	5~16kW	Control functions and states
Inverter compressor	COMP	•	Runs at oil return operation rotation speed
DC fan motor	FAN	•	Controlled according to cooling mode
Electronic expansion valve	EXV	•	304 (steps)
Four-way valve	4-WAY	•	Off

Component control during oil return operation in heating mode.

	'	,	
Component	Wiring diagram label	5~16kW	Control functions and states
Inverter compressor	COMP	•	Runs at oil return operation rotation speed
DC fan motor	FAN	•	Controlled according to heating mode
Electronic expansion valve	EXV	•	304 (steps)
Four-way valve	4-WAY	•	On

Mini Chiller Serie H12

6.2 Defrosting operation

In order to recover heating capacity, the defrosting operation is conducted when the air side heat exchanger is performing as a condenser. The defrosting operation is controlled according to outdoor ambient temperature, air side heat exchanger refrigerant outlet temperature and the compressor running time.

Component control during defrosting operation

Component	Wiring diagram label	5~16kW	Control functions and states
Inverter compressor	COMP	•	Runs at defrosting operation rotation speed
DC fan motor	FAN	•	Off
Electronic expansion valve	EXV	•	Fully open
Four-way valve	4-WAY	•	Off

6.3 Force cooling operation

The force cooling operation helps the refrigerant recovering before removal the water side heat exchanger.

The force cool mode can be ended by pushing the button on the outdoor refrigerant system PCB named "force-Bool" for 5s or this mode will be ended automatic if the system has operated force cool mode for more than 30 minutes.

Component control during force cool operation

Component	Wiring diagram label	5-16kW	Control functions and states
Inverter compressor	СОМР	•	Runs at force cooling operation rotation speed
DC fan motor	FAN	•	Runs at force cooling operation speed
Electronic expansion valve	EXV	•	304 (steps)
Four-way valve	4-WAY	•	Off

6.4 Two zones control¹

Two zones control function is used to control temperature of each zone separately, thus different type terminals will operate at its optimal temperature and water pump cycle time will be reduced to save energy.

In two zones control for cooling mode, when the setting temperature of a certain zones is reached, the zone and water pump of this zone will turn off.

In two zones control for heating mode, the on/off control of zone and water pump is same with cooling mode, but in addition, the mixing valve (3-way valve SV3) control function will be activated to adjust the water temperature of the low temperature zone by control the opening time and closing time of the valve. The mixing valve will only turn on when two zones control for heating is activated. On other conditions, the mixing valve will keep off.

When the valve initially turns on, the opening time and closing time is same and then the time is controlled according to the difference between water temperature and setting water temperature of the controlling zone.

Note:

1. Heat pump just have the controlling function, while the mixing valve, water pump of each zone need to be field supplied and connect to heat pump.

6.5 Balance tank temperature control

Balance tank temperature sensor is used to control on/off of heat pump. Once the heat pump stops, internal pump stops to save energy and then balance tank provides hot water for space heating. In addition, balance tank temperature control can meet both space heating and domestic hot water needs at the same time. Balance tank can store energy to provide hot water whilst heat pump runs heat mode/cooling, which can reduce the host selection and the initial investment.

6.6 Dry contract M1M2 control

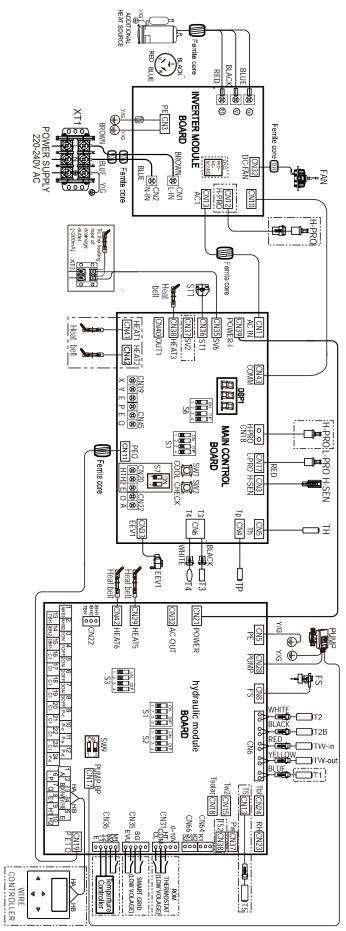
M1M2 can be set in the wired controller for heat pump on/off control, AHS control.

For heat pump on/off control

When dry contract closes for 1s, heat pump stops. When dry contract opens for 5s, heat pump on/off according to wired controller or room thermostat setting.

For AHS control

In heating mode, AHS on/off is only controlled by M1M2.

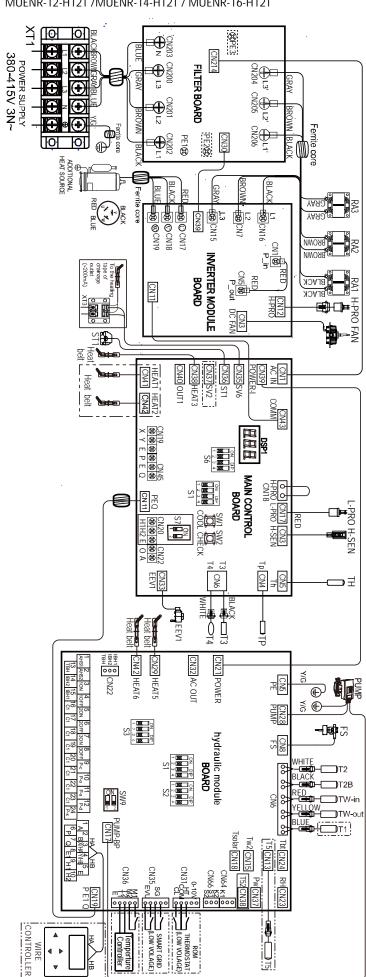

Part 4 Diagnosis and Troubleshooting

1 Electric wiring diagram	24
2 Electric Control Box Layout	28
3 PCB	31
4 Error Code Table	39
5 Troubleshooting	41
6 USB data transfer	85
7 Network Configuration Guidelines	87
8 Temperature Sensor Resistance Characteristics	93

MUND CLIMA

1 Electric wiring diagram

MUENR-05-H12 / MUENR-07-H12 / MUENR-09-H12 MUENR-12-H12 / MUENR-14-H12 / MUENR-16-H12

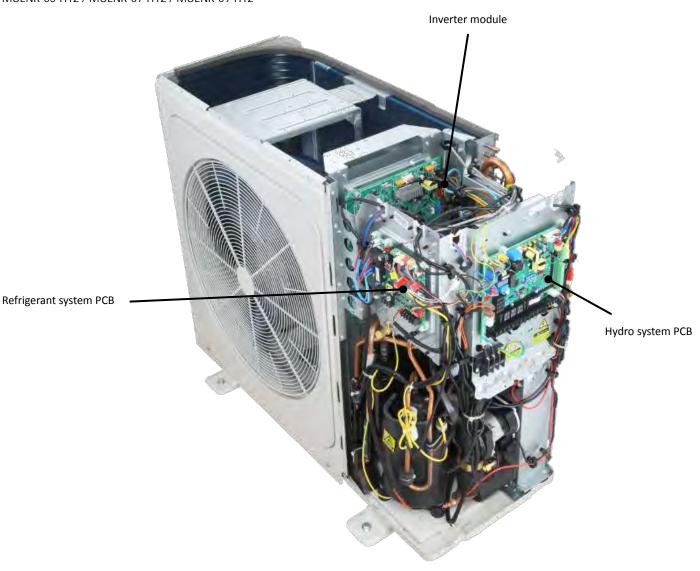


DIP switch settings

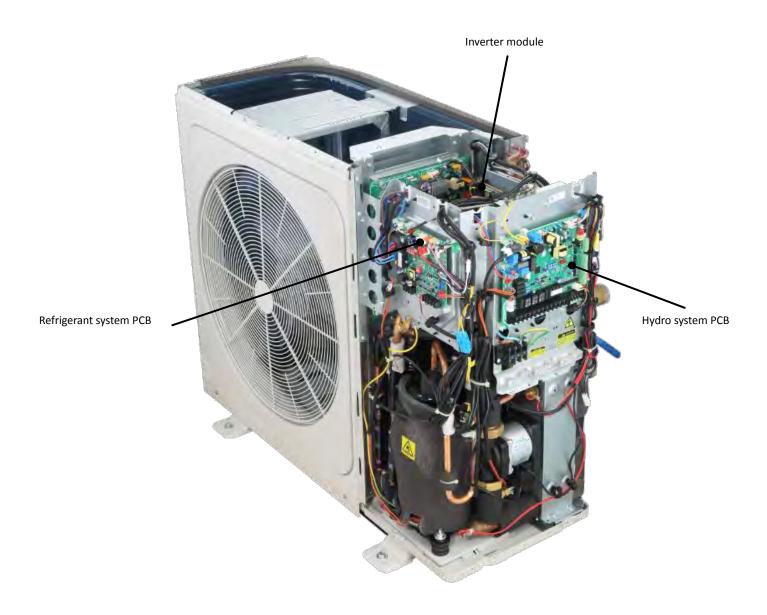
РСВ	Switc	h	ON=1 OFF=0	Default factory setting
	S1	1/2	0/0=Model 1 1/0=Model 2 0/1=Model 3 1/1=Model 4	00
	ON 1 2 3 4 OFF	3/4	0/0=Without backup heater 0/1=With backup heater(One step control) 1/0= With backup heater(Two step control) 1/1= With backup heater(Three step control)	00
	S2	1/2	Reserved	00
Hydro system	ON 1 2 3 4 OFF	3/4	0/0=variable speed pump 1 0/1=variable speed pump 2 1/1=variable speed pump 3 1/0=constant speed pump	00
	S3 ON 1 2 3 4 OFF 1 0 0 0	1/2/3	0/0/0=address 0#(master units) 1/0/0=address 1#(slave units) 0/1/0=address 2#(slave units) 0/0/1=address 3#(slave units) 1/1/0=address 4#(slave units) 1/0/1=address 5#(slave units) 1/0/0=address 6#(slave units) 0/1/0=address 7#(slave units) 1/1/1=address 8#(slave units)	000
		4	Reserved	0
Refrigerant	S1 ON 1 2 3 4 OFF 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1/2/3/4	0/0/0/0=5kW model 0/0/0/1=7kW model 0/0/1/0=9kW model 0/0/1/1=12kW model(Single phase) 0/1/0/0=14kW model(Single phase) 0/1/0/1=16kW model(Single phase)	-
system	S6 ON 1 2 3 4 OFF	1/2/3/4	All the combination=Reserved	0000

MUENR-12-H12T / MUENR-14-H12T / MUENR-16-H12T

Version: D

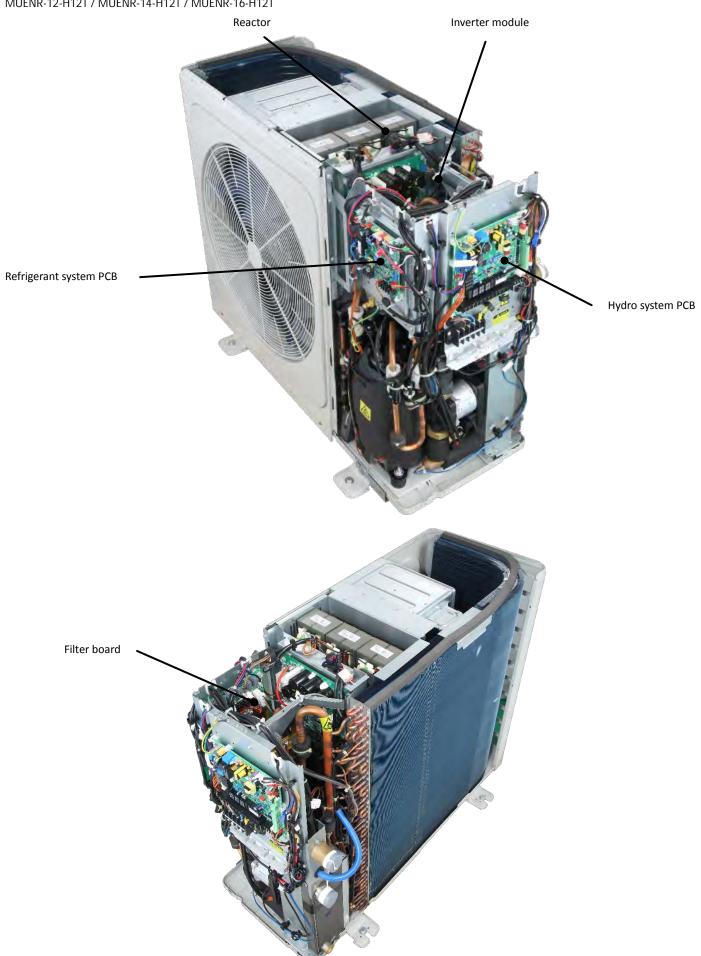

DIP switch settings

PCB	Switch		ON=1 OFF=0	Default factory setting
	S1	1/2	0/0=Model 1 1/0=Model 2 0/1=Model 3 1/1=Model 4	00
	ON 1 2 3 4 OFF	3/4	0/0=Without backup heater 0/1=With backup heater(One step control) 1/0= With backup heater(Two step control) 1/1= With backup heater(Three step control)	00
	S2	1/2	Reserved	00
Hydro system	ON 1 2 3 4 OFF	3/4	0/0=variable speed pump 1 0/1=variable speed pump 2 1/1=variable speed pump 3 1/0=constant speed pump	00
	S3 ON 1 2 3 4 OFF	1/2/3	0/0/0=address 0#(master units) 1/0/0=address 1#(slave units) 0/1/0=address 2#(slave units) 0/0/1=address 3#(slave units) 1/1/0=address 4#(slave units) 1/0/1=address 5#(slave units) 1/0/0=address 6#(slave units) 0/1/0=address 7#(slave units) 1/1/1=address 8#(slave units)	000
		4	Reserved	0
Refrigerant	S1 ON 1 2 3 4 OFF 1 1 2 3 4	1/2/3/4	1/0/1/1=12kW model(Three phase) 1/1/0/0=14kW model(Three phase) 1/1/0/1=16kW model(Three phase)	-
system	ON 1 2 3 4 OFF	1/2/3/4	All the combination=Reserved	0000


MUND CLIMA®

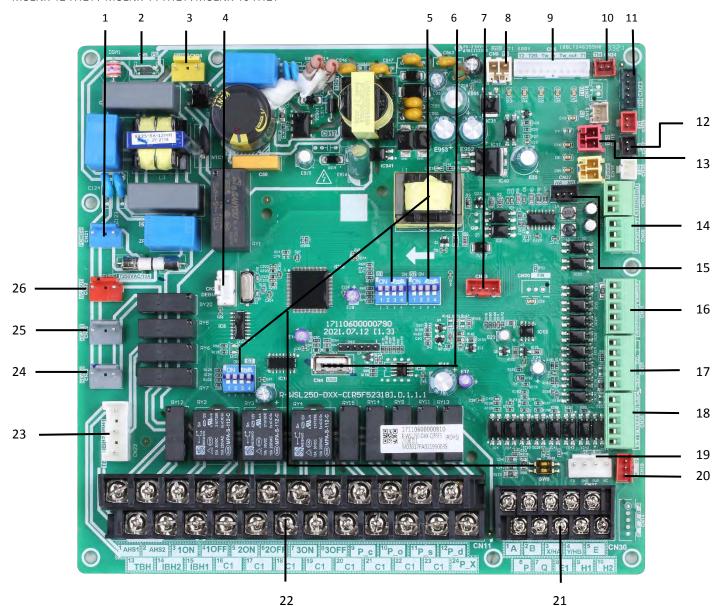
2 Electric Control Box Layout

MUENR-05-H12 / MUENR-07-H12 / MUENR-09-H12



MUENR-12-H12 / MUENR-14-H12 / MUENR-16-H12

MUENR-12-H12T / MUENR-14-H12T / MUENR-16-H12T

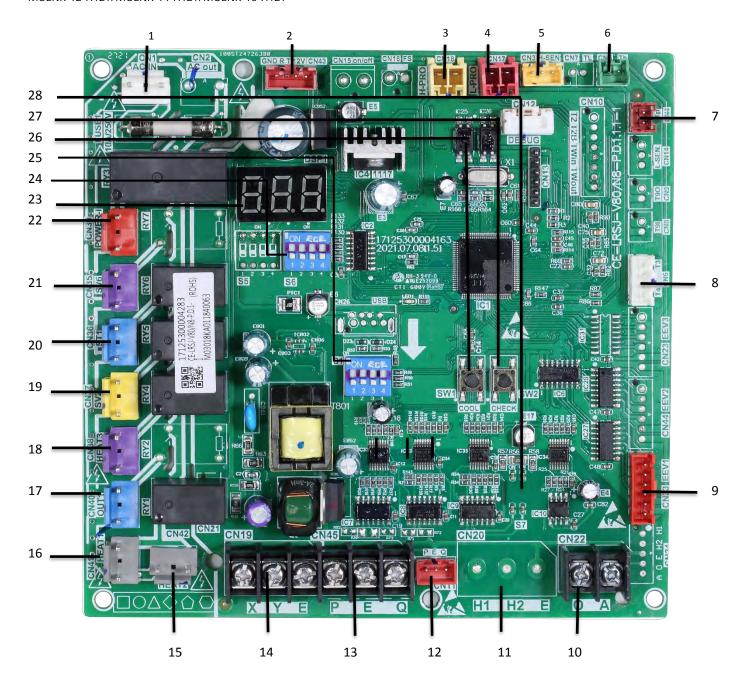


3 PCB

3.1 Hydro system PCB

MUENR-05-H12 / MUENR-07-H12 / MUENR-09-H12 MUENR-12-H12 / MUENR-14-H12 /MUENR-16-H12 MUENR-12-H12T / MUENR-14-H12T /MUENR-16-H12T

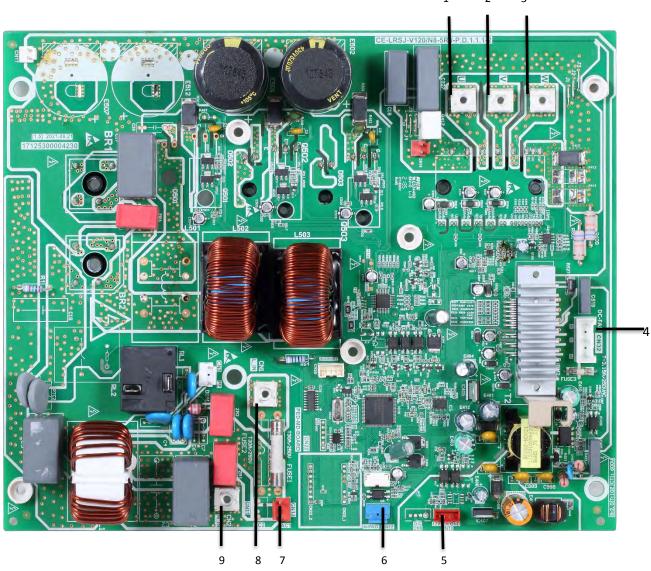
Label	Port	Code	Content	Voltage(V)
1	CN21	POWER	Port for power supply	220VAC
2	CN5	GND	Port for ground	-
3	CN28	PUMP	Port for variable speed pump power input	220VAC
4	CN25	DEBUG	Port for IC programming	5VDC
5	S1 ,S2,S3,SW9	/	Dip switch	5VDC
6	CN4	USB	Port for USB programming	5VDC
7	CN33	/	Port for breathing light	5VDC
8	CN8	FS	Port for flow switch	12VDC
0	CNIC	T2	Port for refrigerant liquid side temperature(heating mode)	5VDC
9	CN6	T2B	Port for temperature sensors of refrigerant gas side temperature (cooling mode)	5VDC


	1	ı		1
		TW_in	Port for temperature sensors of inlet water temperature of plate heat exchanger	5VDC
9	CN6	TW_out	Port for temperature sensors of outlet water temperature of plate heat exchanger	5VDC
		T1	Port for temperature sensors of final outlet water temperature	5VDC
10	CN24	Tbt	Port for temperature sensor of balance tank	5VDC
11	CN23	RH	Port for humidity sensor	5VDC
12	CN37	Pw	Port for temperature sensor of water pressure	5VDC
13	CN15	Tw2	Port for outlet water for zone 2 temp. sensor	5VDC
14	CN66	K1 K2	Input port (Reserved)	12VDC
14	CINOO	S1 S2	Reserved	12VDC
15	CN27	HA/HB	Port for communication with the HOME BUS wired controller (Reserved)	18VDC
		10V GND	Output port for 0-10V	10VDC
16	CN31	HT	Control port for room thermostat (heating mode)	-
16	CN31	СОМ	Power port for room thermostat	12VDC
		CL	Control port for room thermostat (cooling mode)	-
17	CNIZE	SG	Port for smart grid (grid signal)	12VDC
17	CN35	EVU	Port for smart grid (photovoltaic signal)	12VDC
10	CN36	M1 M2	Port for remote switch	12VDC
18	CN30	T1 T2	Port for thermostat transfer board	5VDC
19	CN17	PUMP_BP	Port for variable speed pump communication	5VDC
20	CN19	PQ	Communicate port between indoor unit and outdoor unit	5VDC
		3 4	Port for communication with the wired controller	18VDC
21	CN30	6 7	Communicate port between hydro module board and main control board	5VDC
		9 10	Port for Internal machine Cascade	5VDC
		12	Port for additional heat source	-
		3 4 17	Reserved	220VAC
		5 6 18	Port for SV2(3-way valve)	220VAC
		7 8 19	Port for SV3(3-way valve)	220VAC
		9 20	Port for zone 2 pump	220VAC
22	CN 11	10 21	Port for outside circulation pump	220VAC
22	CN 11	11 22	Reserved	220VAC
		12 23	Reserved	220VAC
		13 16	Reserved	220VAC
		14 16	Control port for internal backup heater 1	220VAC
		15 17	Control port for internal backup heater 2	220VAC
		24 23	Output port for alarm/Defrost run	220VAC
		IBH1	Control port for internal backup heater 1	220VAC
23	CN22	IBH2	Control port for internal backup heater 2	220VAC
		ТВН	Reserved	220VAC
24	CN42	HEAT6	Port for anti-freeze electric heating tape(internal)	220VAC
25	CN29	HEAT5	Port for anti-freeze electric heating tape(internal)	220VAC
26	CN32	AC OUT	Port for backup heater	220VAC

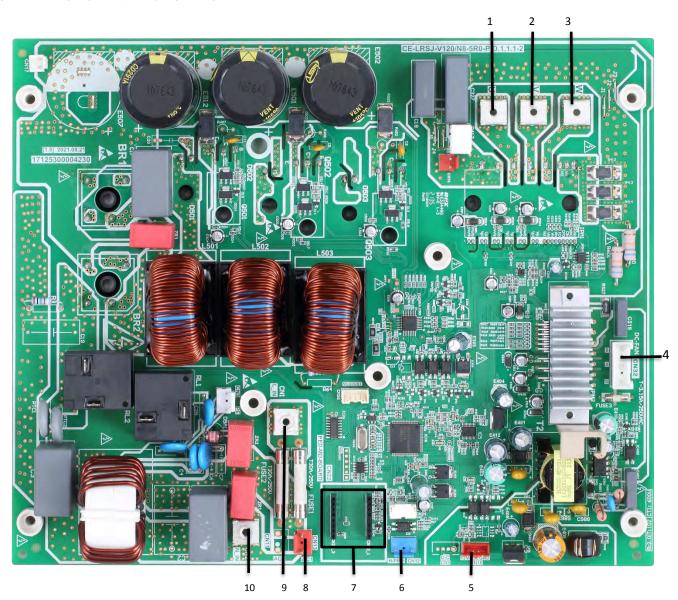
3.2 Refrigerant system PCB

MUENR-05-H12/MUENR-07-H12/MUENR-09-H12 MUENR-12-H12/MUENR-14-H12/MUENR-16-H12

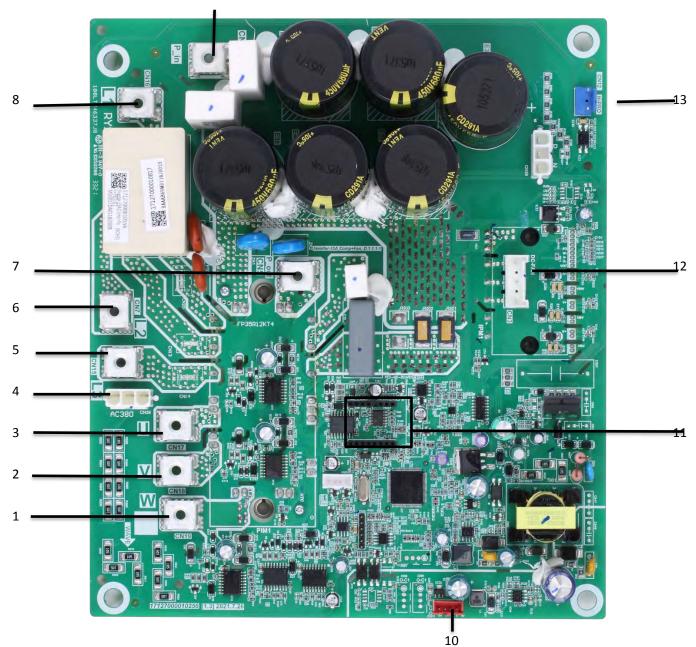
MUENR-12-H12T/MUENR-14-H12T/MUENR-16-H12T



Label	Port	Content	Voltage(V)
1	CN1	Power input port from main control board	220VAC
2	CN43	Port for communication with Inverter module	12VDC/5VDC
3	CN18	Port for high pressure switch	3.3VDC
4	CN17	Port for low pressure switch	3.3VDC
5	CN3	Port for high pressure sensor	5VDC
6	CN5	Port for TH temperature sensor	3.3VDC
7	CN4	Port for TP temperature sensor	3.3VDC
8	CN6	Port for T3,T4 temperature sensor	3.3VDC
9	CN33	Port for electrical expansion valve1	12VDC
10	CN22	Port for communication with ammeter	5VDC
11	CN20	Port for communication with outdoor unit (Reserved)	5VDC
12	CN11	Port for communication with hydro-box control board PQE	5VDC
13	CN45	Port for communication with hydro-box control board PQE	5VDC
14	CN19	Port for communication with indoor monitor XYE	5VDC
15	CN42	Reserved	220VAC
16	CN41	Reserved	220VAC
17	CN40	OUT1	220VAC
18	CN38	Port for crankcase heating tape	220VAC
19	CN37	SV2(Reserved)	220VAC
20	CN36	Port for 4-way valve	220VAC
21	CN35	Port for the heating tape of drainage outlet	220VAC
22	CN39	Power output port to hydraulic module board	220VAC
23	DSP1	Digital display	3.3VDC
24	\$6	Dip switch	3.3VDC
25	S1	Dip switch	3.3VDC
26	SW1	Port for Forced cooling	3.3VDC
27	SW2	Port for point check	3.3VDC
28	S7	Dip switch(Reserved)	3.3VDC

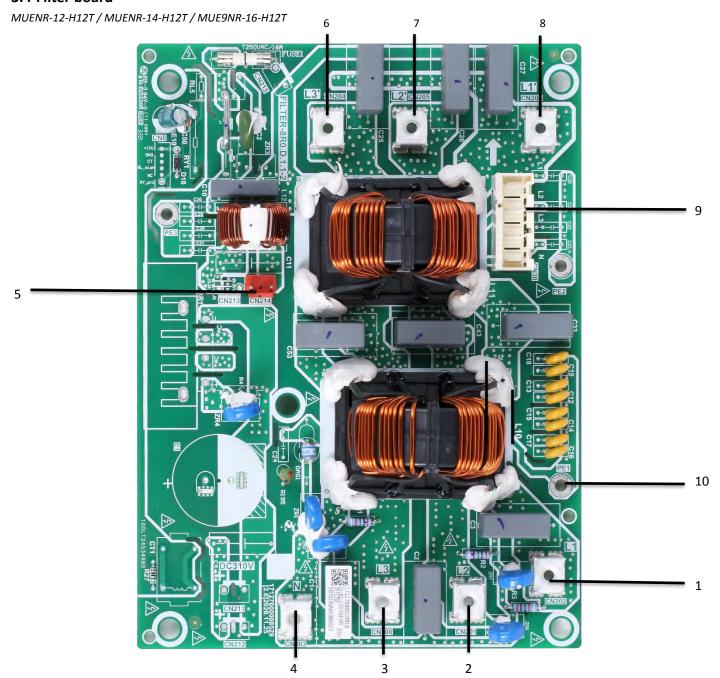

3.3 Inverter Module

MUENR-05-H12 / MUENR-07-H12 / MUENR-09-H12


Label	Port	Content	Voltage(V)
1	C	Compressor connection port U	380VAC
2	V	Compressor connection port V	380VAC
3	W	Compressor connection port W	380VAC
4	CN32	Port for fan	380VAC
5	CN10	Port for communication with main control board	12VDC
6	CN12	Reserved	12VDC
7	CN13	Port for power supply	220VAC
8	CN1	Input port L for rectifier bridge	220VAC
9	CN2	Input port N for rectifier bridge	220VAC

MUENR-12-H12 / MUENR-14-H12 / MUENR-16-H12

Label	Port	Content	Voltage(V)
1	C	Compressor connection port U	380VAC
2	V	Compressor connection port V	380VAC
3	W	Compressor connection port W	380VAC
4	CN32	Port for fan	380VAC
5	CN10	Port for communication with main control board	12VDC
6	CN12	Port for high pressure switch	12VDC
7	CN22	PED board	5VDC
8	CN13	Port for power supply	220VAC
9	CN501	Input port L for rectifier bridge	220VAC
10	CN502	Input port N for rectifier bridge	220VAC


MUENR-12-H12T / MUENR-14-H12T / MUENR-16-H12T

Label	Port	Content	Voltage(V)
1	W	Compressor connection port W	380VAC
2	V	Compressor connection port V	380VAC
3	U	Compressor connection port U	380VAC
4	CN39	Port for voltage detection	380VAC
5	CN15	Power Input port L3	380VAC
6	CN7	Power Input port L2	380VAC
7	CN5	Input port P_out for IPM module	540VDC
8	CN16	Power Input port L1	380VAC
9	CN1	Input port P_in for IPM module	540VDC
10	CN43	Port for communication with main control board	12VDC
11	CN22	PED board	5VDC
12	CN3	Port for communication with DC FAN	380VAC
13	CN12	Port for high pressure switch	10VDC

3.4 Filter board

Label	Port	Content	Voltage(V)
1	CN202	Power supply L1	380VAC
2	CN201	Power supply L2	380VAC
3	CN200	Power supply L3	380VAC
4	CN203	Power supply N	/
5	CN214	Power supply port for main control board	220VAC
6	CN204	Power filtering output L3'	380VAC
7	CN205	Power filtering output L2'	380VAC
8	CN206	Power filtering output L1'	380VAC
9	CN30	Power for voltage detection	380VAC
10	PE1	Port for ground wire	/

3.5 Digital Display Output

Outdoor unit state	Parameters displayed on refrigerant system DSP1
On standby	0
Normal operation	Running speed of the compressor in rotations per second
Error or protection	Error or protection code

4 Error Code Table

Error code	Serial number	Content ¹	
bA	106	T4 sensor out of operation range	
C 7	65	High temperature protection of inverter module	
EO	1	Water flow malfunction(after 3 times E8)	
E1	2	Phase loss or neutral wire and live wire are connected reversely	
E2	3	Communication malfunction between controller and hydraulic module	
E3	4	Total outlet water temperature sensor(T1) malfunction	
E5	6	Air side heat exchanger temperature sensor (T3) malfunction	
E6	7	Outdoor ambient temperature sensor malfunction	
E7	8	Buffer tank upper temperature sensor(Tbt) malfunction	
E8	9	Water flow malfunction	
E9	10	Suction temperature sensor(Th) malfunction	
EA	11	Discharge temperature sensor(Tp) malfunction	
Eb	12	Solar temperature sensor(Tsolar) malfunction	
Ed	14	Inlet water temperature sensor (Tw_in) malfunction	
EE	15	Hydraulic module EEprom malfunction	
F1	116	DC bus low voltage protection	
F6	121	EXV1 fault	
Н0	39	Communication malfunction between main control board and hydraulic module board	
H1	40	Communication malfunction between main control board and inverter board	
H2	41	Liquid refrigerant temperature sensor(T2) malfunction	
Н3	42	Gas refrigerant temperature sensor(T2B) malfunction	
H4	43	Three times L0 protection	
H5	44	Room temperature sensor(Ta) malfunction	
Н6	45	DC fan malfunction	
H7	46	Voltage protection	
Н8	47	Pressure sensor malfunction	
Н9	48	Outlet water for zone 2 temperature sensor (Tw2) malfunction	
НА	49	Outlet water temperature sensor (Tw_out) malfunction	
Hb	50	Three times PP protection and Tw_out below 7 °C	
Hd	52	Communication malfunction between master unit and slave unit	
HF	54	Inverter module board EE prom malfunction	
НН	55	10 times H6 in 2 hours	
НР	57	Low pressure protection in cooling mode	
P0	20	Low pressure switch protection	
P1	21	High pressure switch protection	

Mini Chiller Serie H12 MUND CLIMA Compressor overcurrent protection Р4 24 Compressor discharge temperature too high protection Р5 25 |Tw_out-Tw_in| value too big protection Pb 31 Anti-freeze mode Pd 33 High temperature protection of air side heat exchanger temperature(T3). PΡ 38 | Tw_out-Tw_in | abnormal protection L0 134 Inverter or compressor protection L1 135 DC bus low voltage protection L2 136 DC bus high voltage protection L3 137 Current sampling error of PFC circuit L4 138 Rotating stall protection L5 139 Zero speed protection L7 141 Phase loss protection of compressor

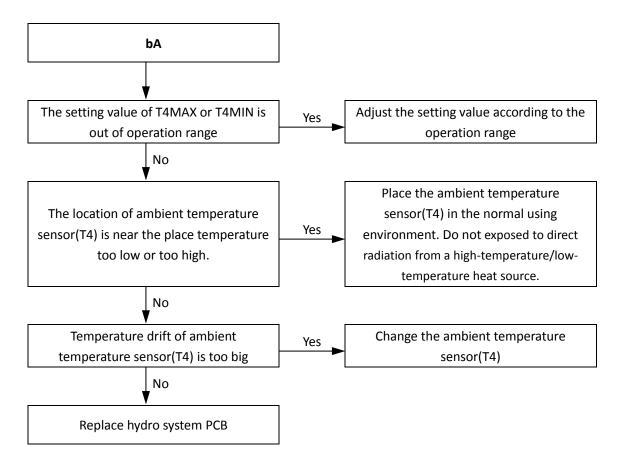
5 Troubleshooting

5.1 Warning

Warning

- All electrical work must be carried out by competent and suitably qualified, certified and accredited professionals and in accordance with all applicable legislation (all national, local and other laws, standards, codes, rules, regulations and other legislation that apply in a given situation).
- Power-off the outdoor units before connecting or disconnecting any connections or wiring, otherwise electric shock (which can cause physical injury or death) may occur or damage to components may occur.

5.2 bA Troubleshooting


5.2.1 Digital display output

5.2.2 Description

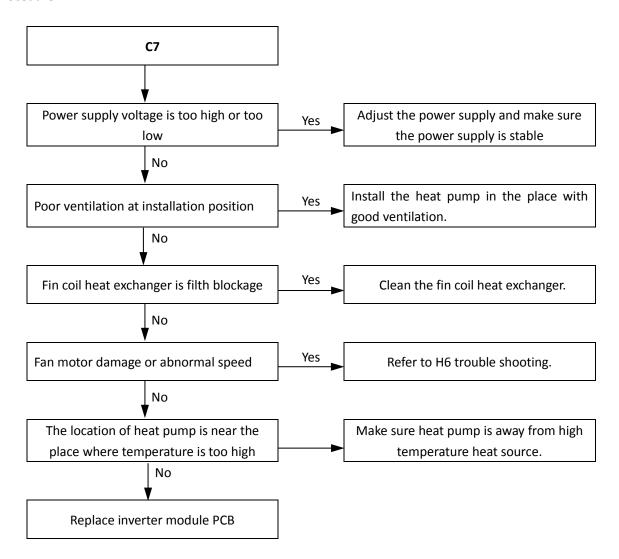
- Outdoor temperature exceeds the operation temperature range
- Heat pump stops running.
- Error code is displayed on the refrigerant system PCB digital tube and user interface.

5.2.3 Procedure

Votes:

1. Ambient temperature sensor(T4) connection is port CN6 on the refrigerant system PCB

5.3 C7 Troubleshooting


5.3.1 Digital display output

5.3.2 Description

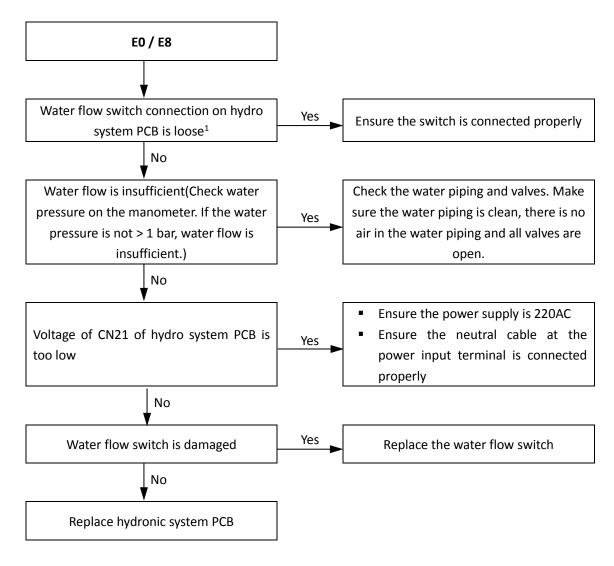
- High temperature protection of inverter module
- Heat pump stops running.
- Error code is displayed on the refrigerant system PCB digital tube and user interface.

5.3.3 Procedure

MUND CLIMA®

5.4 EO, E8 Troubleshooting

5.4.1 Digital display output



5.4.2 Description

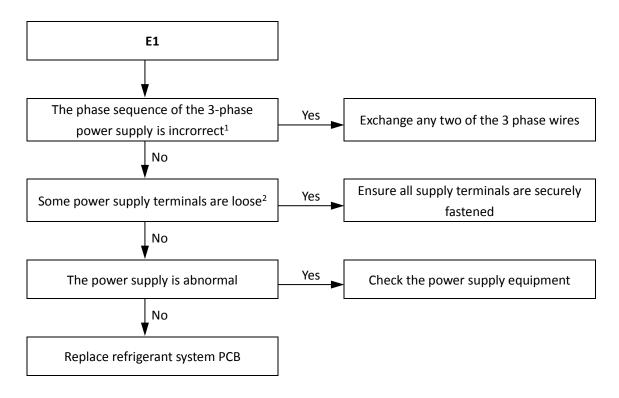
- Water flow failure.
- E0 indicates E8 has displayed 3 times. When an E0 error occurs, a manual system restart is required before the system can resume operation.
- Heat pump stops running.
- Error code is displayed on the refrigerant system PCB digital tube and user interface.

5.4.3 Procedure

Notes:

1. Water flow switch connection is port CN8 on the hydro system PCB.

5.5 E1 Troubleshooting


5.5.1 Digital display output

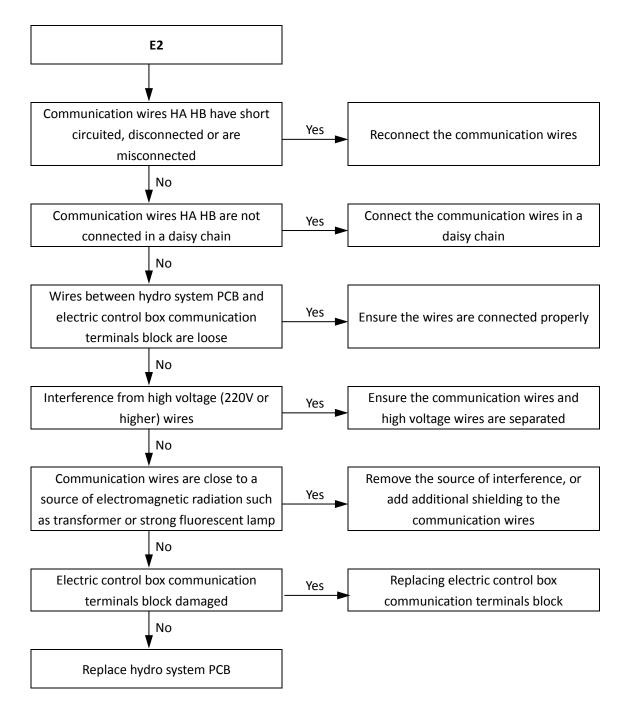
5.5.2 Description

- Phase sequence error.(Only applies to 3-phase models)
- Heat pump stops running.
- Error code is displayed on the refrigerant system PCB digital tube and user interface..

5.5.3 Procedure

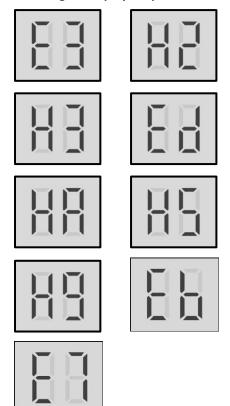
- 1. The A, B, C terminals of 3-phase power supply should match compressor phase sequence requirements. If the phase sequence is inverted, the compressor will operate inversely. If the wiring connection of each outdoor unit is in A, B, C phase sequence, and multiple units are connected, the current difference between C phase and A, B phases will be very large as the power supply load of each outdoor unit will be on C phase. This can easily lead to tripped circuits and terminal wiring burnout. Therefore if multiple units are to be used, the phase sequence should be staggered, so that the current is distributed among the three phases equally.
- 2. Loose power supply terminals can cause the compressors to operate abnormally and compressor current to be very large.

5.6 E2 Troubleshooting


5.6.1 Digital display output

5.6.2 Description

- Communication error between hydro system PCB and user interface.
- Heat pump stops running.
- Error code is displayed on the refrigerant system PCB digital tube and user interface.


5.6.3 Procedure

5.7 E3, H2, H3, Ed, HA, H5, H9 Troubleshooting

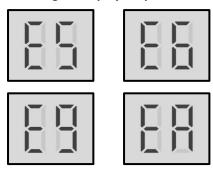
5.7.1 Digital display output

5.7.2 Description

- E3 indicates total outlet water temperature sensor(T1) malfunction
- H2 indicates liquid refrigerant temperature sensor(T2) malfunction
- H3 indicates gas refrigerant temperature sensor(T2B) malfunction
- Ed indicates inlet water temperature sensor (Tw_in) malfunction
- HA indicates outlet water temperature sensor (Tw_out) malfunction
- H5 indicates room temperature sensor(Ta) malfunction
- H9 indicates outlet water for zone 2 temperature sensor (Tw2) malfunction.
- Eb indicates solar temperature sensor(Tsolar) malfunction
- E7 indicates buffer tank upper temperature sensor(Tbt) malfunction
- Heat pump stops running.
- Error code is displayed on the refrigerant system PCB digital tube and user interface.

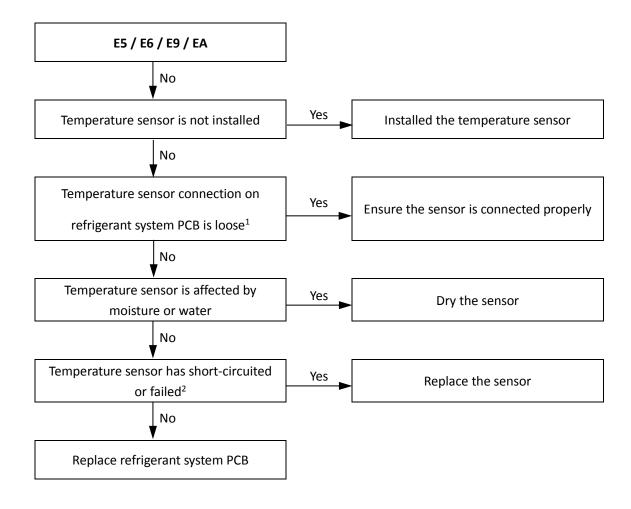
MUND CLIMA®

5.7.3 Procedure


Votes:

- Total outlet water temperature sensor(T1), liquid refrigerant temperature sensor(T2), gas refrigerant temperature sensor(T2B), inlet water temperature sensor (Tw_in), outlet water temperature sensor (Tw_out) connection is port CN6 on the hydro system PCB. Room temperature sensor(Ta)
 - Outlet water for zone 2 temperature sensor (Tw2) connection is port CN15 on the hydro system PCB. Buffer tank upper temperature sensor(Tbt) connection is port CN24 on the hydro system PCB.
- 2. Measure sensor resistance. If the resistance is too low, the sensor has short-circuited. If the resistance is not consistent with the sensor's resistance characteristics table, the sensor has failed.

5.8 E5, E6, E9, EA Troubleshooting


5.8.1 Digital display output

5.8.2 Description

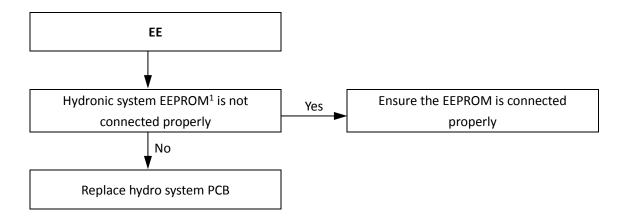
- E5 indicates air side heat exchanger temperature sensor (T3)malfunction
- E6 indicates outdoor ambient temperature sensor error
- E9 indicates suction temperature sensor(Th) malfunction
- EA indicates discharge temperature sensor(Tp) malfunction
- Heat pump stops running.
- Error code is displayed on the refrigerant system PCB digital tube and user interface..

5.8.3 Procedure

- Air side heat exchanger temperature sensor (T3), outdoor ambient temperature sensor(T4) connection is port CN6 on the refrigerant system PCB.
 Suction temperature sensor (Th) connection is port CN5 on the refrigerant system PCB.
 Discharge temperature sensor (Tp) connection is port CN4 on the refrigerant system PCB.
- 2. Measure sensor resistance. If the resistance is too low, the sensor has short-circuited. If the resistance is not consistent with the sensor's resistance characteristics table, the sensor has failed.

MUND CLIMA®

5.9 EE Troubleshooting


5.9.1 Digital display output

5.9.2 Description

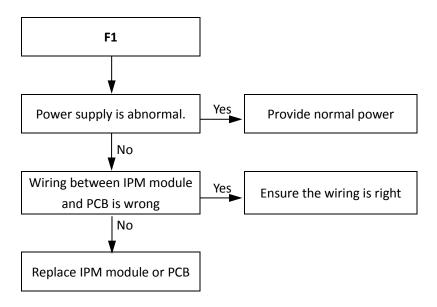
- Hydronic system EEPROM error.
- Heat pump stops running.
- Error code is displayed on the refrigerant system PCB digital tube and user interface.

5.9.3 Procedure

Notes:

1. Hydro system PCB EEPROM is designated IC18 on the hydro system PCB (labeled 29 in Figure 4-2.1 in Part 4, 2.2 "Main PCB for Hydronic System").

5.10 F1 Troubleshooting

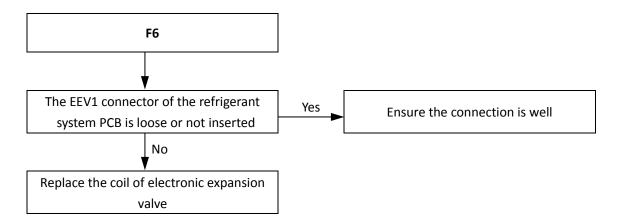

5.10.1 Digital display output

5.10.2 Description

- DC bus low voltage protection
- Heat pump stops running.
- Error code is displayed on the refrigerant system PCB digital tube and user interface.

5.10.3 Procedure

5.11 F6 Troubleshooting

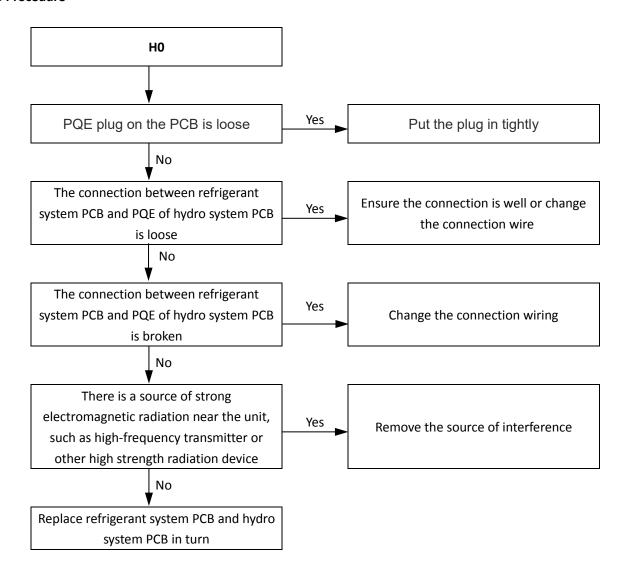

5.11.1 Digital display output

5.11.2 Description

- EXV1 fault
- Heat pump stops running.
- Error code is displayed on the refrigerant system PCB digital tube and user interface.

5.11.3 Procedure

5.12 H0 Troubleshooting


5.12.1 Digital display output

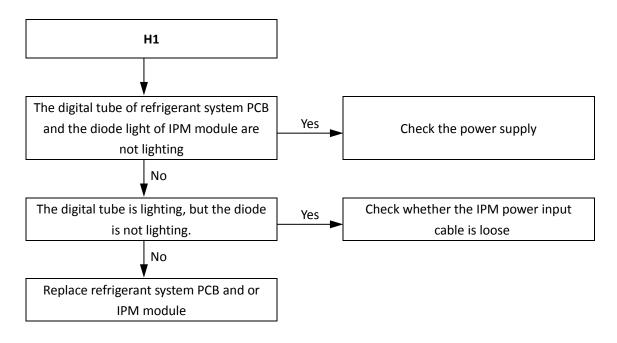
5.12.2 Description

- Communication malfunction between main control board and hydraulic module board
- Heat pump stops running.
- Error code is displayed on the refrigerant system PCB digital tube and user interface.

5.12.3 Procedure

5.13 H1 Troubleshooting

5.13.1 Digital display output



5.13.2 Description

- Communication malfunction between main control board and inverter board
- Heat pump stops running.
- Error code is displayed on the refrigerant system PCB digital tube and user interface..

•

5.13.3 Procedure

5.14 H4 Troubleshooting

5.14.1 Digital display output

5.14.2 Description

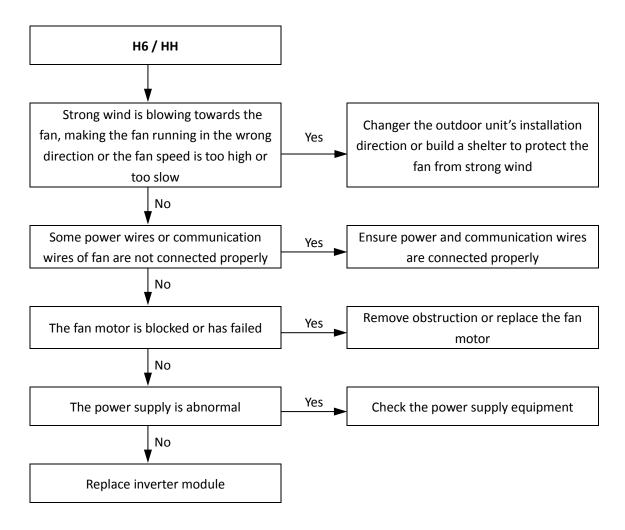
- H4 indicates three times L0 protection in one hour
- Heat pump stops running.
- Error code is displayed on the refrigerant system PCB digital tube and user interface..

5.14.3 Procedure

Refer to P6 trouble shooting.

5.15 H6, HH Troubleshooting

5.15.1 Digital display output

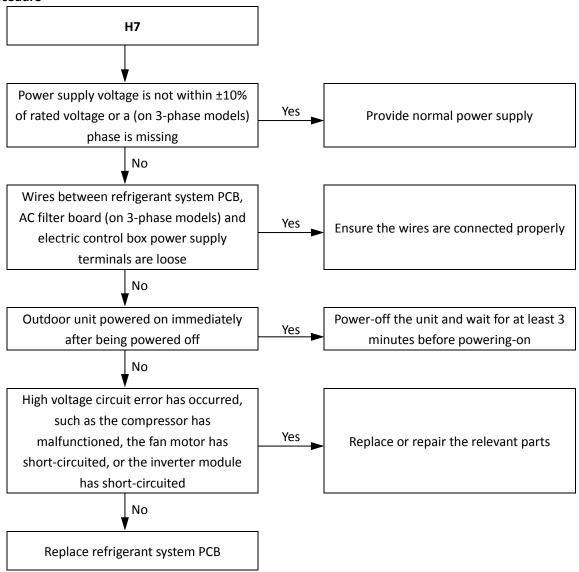


5.15.2 Description

- H6 indicates a DC fan error.
- HH indicates that H6 protection has occurred 10 times in 2 hours. When an HH error occurs, a manual system restart is required before the system can resume operation.
- Heat pump stops running.
- Error code is displayed on the refrigerant system PCB digital tube and user interface..

5.15.3 Procedure

5.16 H7 Troubleshooting


5.16.1 Digital display output

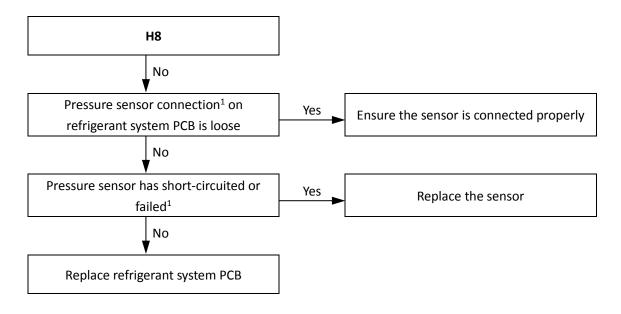
5.16.2 Description

- H7 indicates Voltage protection
- Heat pump stops running.
- Error code is displayed on the refrigerant system PCB digital tube and user interface..

5.16.3 Procedure

MUND CLIMA

5.17 H8 Troubleshooting


5.17.1 Digital display output

5.17.2 Description

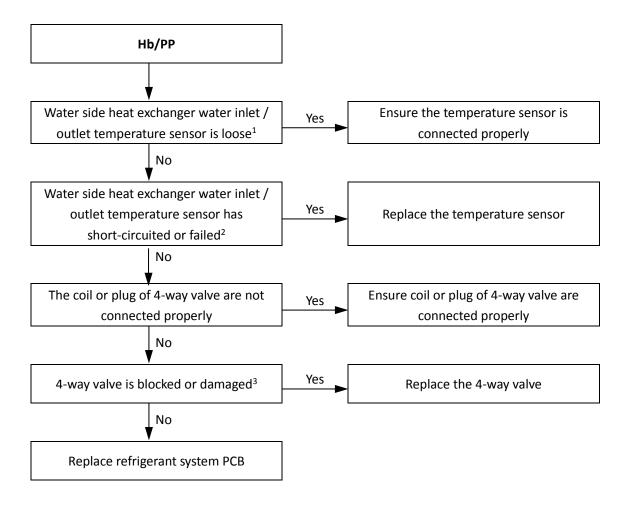
- H8 indicates pressure sensor malfunction
- Heat pump stops running.
- Error code is displayed on the refrigerant system PCB digital tube and user interface..

5.17.3 Procedure

Votes:

1. Pressure sensor connection is port CN3 on the refrigerant system PCB.

5.18 Hb/PP Troubleshooting


5.18.1 Digital display output

5.18.2 Description

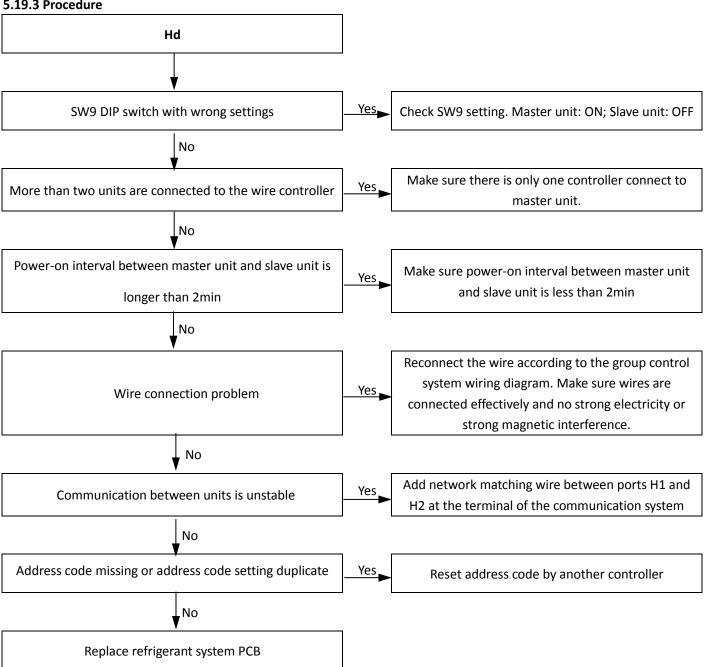
- PP indicates | Tw_out-Tw_in | abnormal protection.
- lacktriangle Hb indicate three times PP protection and Tw_out below 7 $\,^\circ\mathrm{C}$
- Heat pump stops running.
- Error code is displayed on the refrigerant system PCB digital tube and user interface.

5.18.3 Procedure

- 1. Inlet water temperature sensor(TW_in), outlet water temperature sensor(TW_out) connection are port CN6 on the hydro system PCB.
- 2. Measure sensor resistance. If the resistance is too low, the sensor has short-circuited. If the resistance is not consistent with the sensor's resistance characteristics table, the sensor has failed.
- 3. Restart the unit in cooling mode to change the refrigerant flow direction. If the unit does not operate normally, the 4-way valve is blocked or damaged.

MUND CLIMA

5.19 Hd Troubleshooting

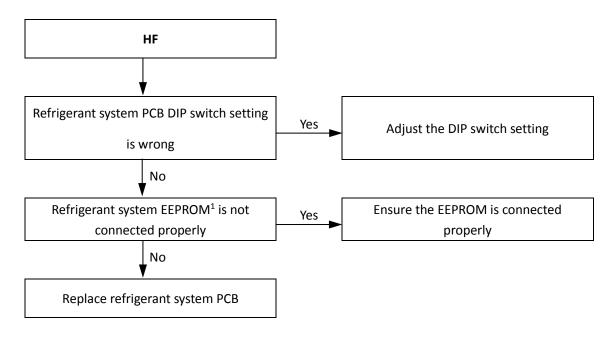

5.19.1 Digital display output

5.19.2 Description

- Hd indicates communication malfunction between master unit and slave unit(Only apply for cascade application)
- Heat pump stops running.
- Error code is displayed on the refrigerant system PCB digital tube and user interface..

5.19.3 Procedure

5.20 HF Troubleshooting


5.20.1 Digital display output

5.20.2 Description

- Inverter module board EE prom malfunction
- Heat pump stops running.
- Error code is displayed on the refrigerant system PCB digital tube and user interface.

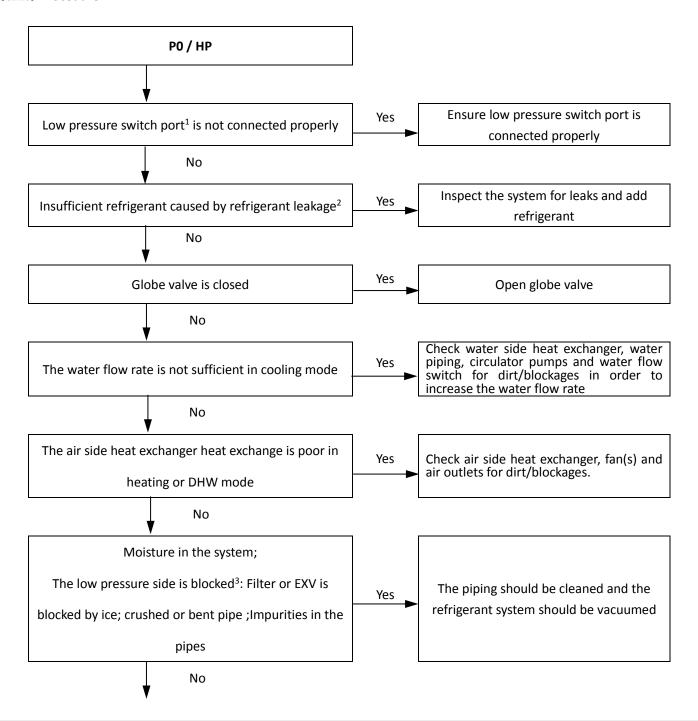
5.20.3 Procedure

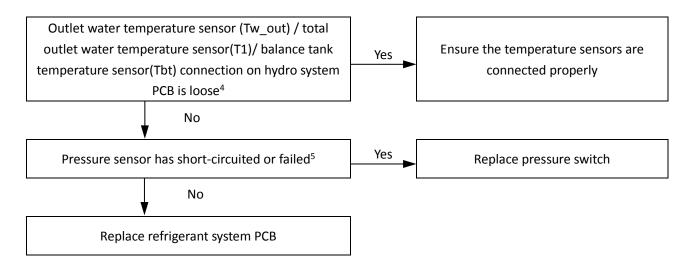
Notes:

1. Refrigerant system PCB EEPROM is designated IC23 on the refrigerant system PCBs (labeled 29 in Figure 4-2.2 in Part 4, 2.3 "Main PCBs for Refrigerant System, Inverter Modules and Filter Boards"), designed IC13 on the refrigerant system PCBs (labeled 19 in Figure 4-2.4 in Part 4, 2.2 "Main PCBs for Refrigerant System, Inverter Modules and Filter Boards"), designed IC23 on the refrigerant system PCBs (labeled 26 in Figure 4-2.6 in Part 4, 2.2 "Main PCBs for Refrigerant System, Inverter Modules and Filter Boards").

5.21 PO, HP Troubleshooting

5.21.1 Digital display output



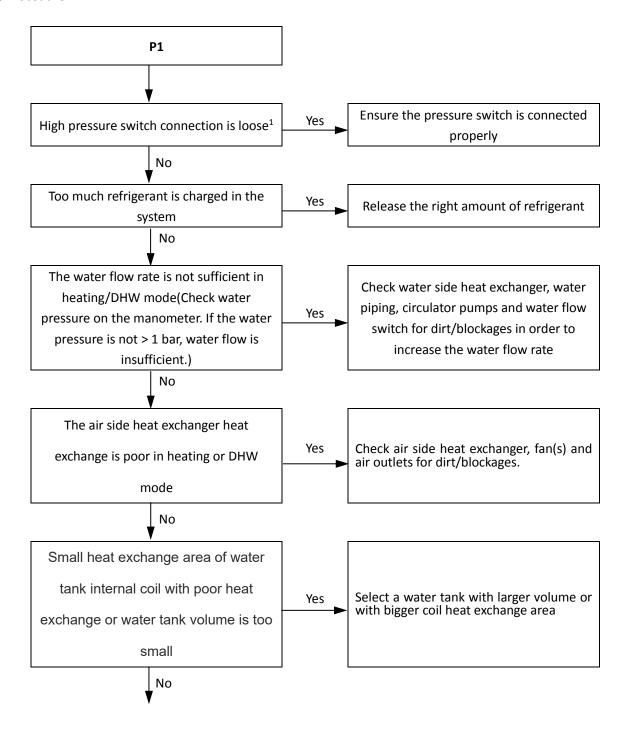

5.21.2 Description

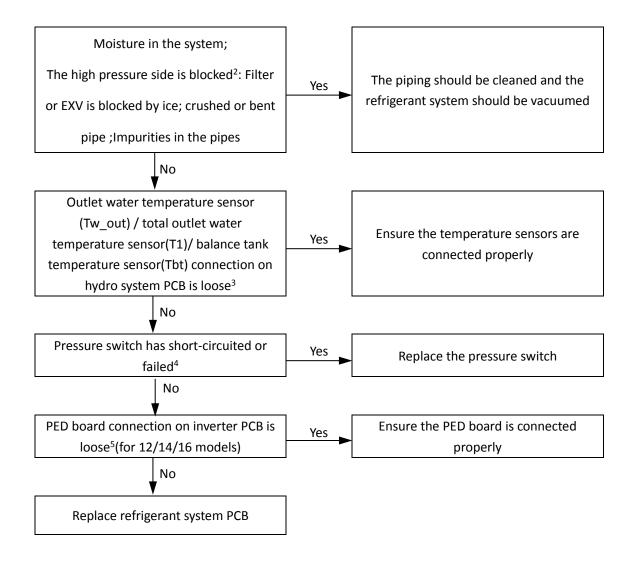
- P0 indicates Low pressure switch protection.
- HP indicates Low pressure protection in cooling mode. When an HP error occurs, a manual system restart is required before the system can resume operation.
- Error code is displayed on the refrigerant system PCB digital tube and user interface..

5.21.3 Procedure

- 1. Low pressure switch connection is port CN17 on the refrigerant system PCB.
- 2. An insufficiency of refrigerant causes compressor discharge temperature to be higher than normal, discharge and suction pressures to be lower than normal and compressor current to be lower than normal, and may cause frosting to occur on the suction pipe. These issues disappear once sufficient refrigerant has been charged into the system.
- 3. A low pressure side blockage causes compressor discharge temperature to be higher than normal, suction pressure to be lower than normal and compressor current to be lower than normal, and may cause frosting to occur on the suction pipe. For normal system parameters.
- 4. Outlet water temperature sensor (Tw_out), total outlet water temperature sensor(T1), balance tank temperature sensor(Tbt) connection is port CN6 on the hydro system PCB.
- 5. Measure the resistance among the three terminals of the pressure sensor. If the resistance is of the order of mega Ohms or infinite, the pressure sensor has failed.

5.22 P1 Troubleshooting


5.22.1 Digital display output

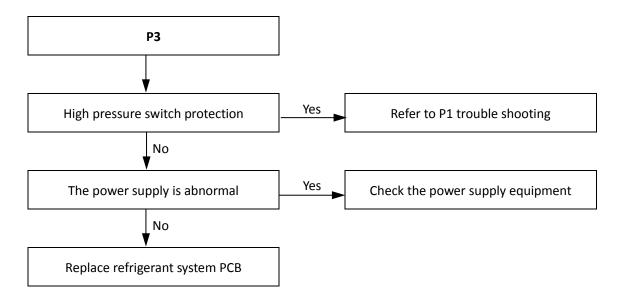

5.22.2 Description

- High pressure switch protection
- Error code is displayed on the refrigerant system PCB digital tube and user interface..

5.22.3 Procedure

- 1. High pressure switch connection is port CN18 on the refrigerant system PCB.
- 2. High pressure side blockage causes discharge temperature to be higher than normal, discharge pressure to be higher than normal and suction pressure to be lower than normal.
- 3. Total outlet water temperature sensor(T1), outlet water temperature sensor (Tw_out) connection is port CN6 on the hydro system PCB.
- Buffer tank upper temperature sensor(Tbt) connection is port CN24 on the hydro system PCB.
- 4. Measure the resistance among the terminals of the pressure switch. If the resistance is of the order of mega Ohms or infinite, the pressure switch has failed
- 5. PED board connection is port CN22 on the inverter module of 12/14/16kW unit.

5.23 P3 Troubleshooting


5.23.1 Digital display output

5.23.2 Description

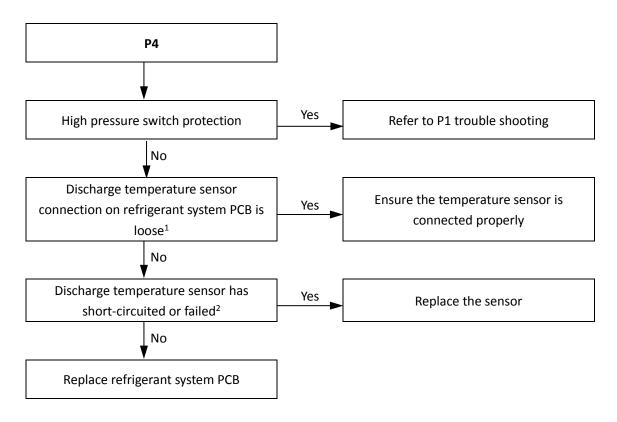
- Compressor current protection.
- Error code is displayed on the refrigerant system PCB digital tube and user interface..

5.23.3 Procedure

Notos:

- 1. Set a multi-meter to buzzer mode and test any two terminals of P N and U V W of the inverter module. If the buzzer sounds, the inverter module has short-circuited.
- 2. The normal resistances of the inverter compressor are 0.7-1.5Ω among U V W and infinite between each of U V W and ground. If any of the resistances differ from these specifications, the compressor has malfunctioned.

5.24 P4 Troubleshooting


5.24.1 Digital display output

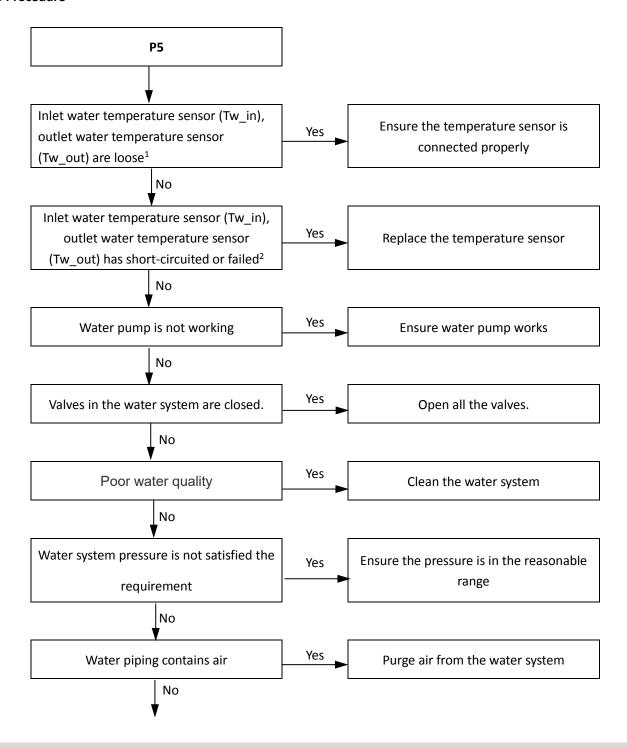
5.24.2 Description

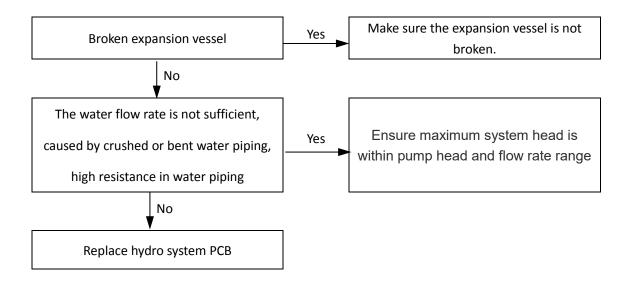
- Compressor discharge temperature too high protection
- Error code is displayed on the refrigerant system PCB digital tube and user interface..

5.24.3 Procedure

- 1. Discharge temperature sensor (Tp) connection is port CN4 on the refrigerant system PCB.
- 2. Measure sensor resistance. If the resistance is too low, the sensor has short-circuited. If the resistance is not consistent with the sensor's resistance characteristics table, the sensor has failed.

5.25 P5 Troubleshooting


5.25.1 Digital display output


5.25.2 Description

- |Tw_out-Tw_in| value too big protection
- Heat pump stops running.
- Error code is displayed on the refrigerant system PCB digital tube and user interface.

5.25.3 Procedure

- 1. Inlet water temperature sensor (Tw_in) connection, outlet water temperature sensor (Tw_out) connection is port CN6 on the hydro system PCB.
- 2. Measure sensor resistance. If the resistance is too low, the sensor has short-circuited. If the resistance is not consistent with the sensor's resistance characteristics table, the sensor has failed.

Mini Chiller Serie H12

5.26 Pb Troubleshooting

5.26.1 Digital display output

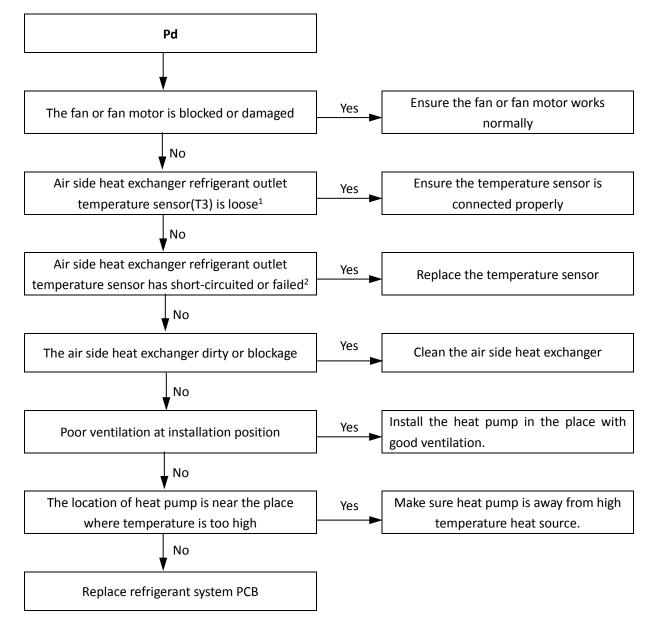
5.26.2 Description

- Anti-freeze mode protection.
- Code is displayed on refrigerant system PCB and ANTI.FREEZE icon is displayed on user interface.

5.26.3 Procedure

Anti-freeze is used to protect the water system from cracking during winter. It is normal protection operation and heat pump will return to the normal operation automatically.

5.27 Pd Troubleshooting


5.27.1 Digital display output

5.27.2 Description

- High temperature protection of air side heat exchanger refrigerant outlet in cooling mode. When the air side heat exchanger refrigerant outlet temperature is higher than 61°C for more than 3 seconds, the system displays Pd protection and heat pump stops running. When the air side heat exchanger refrigerant outlet temperature returns drops below 55°C, Pd is removed and normal operation resumes.
- Heat pump stops running.
- Error code is displayed on the refrigerant system PCB digital tube and user interface..

5.27.3 Procedure

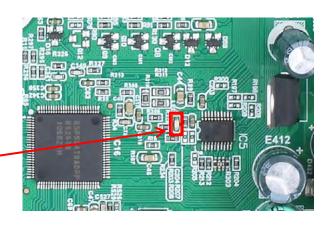
- Air side heat exchanger temperature sensor (T3) connection is port CN6 on the refrigerant system PCB.
- 2. Measure sensor resistance. If the resistance is too low, the sensor has short-circuited. If the resistance is not consistent with the sensor's resistance characteristics table, the sensor has failed.

MUND CLIMA®

5.28 Inverter module Troubleshooting for single-phase models

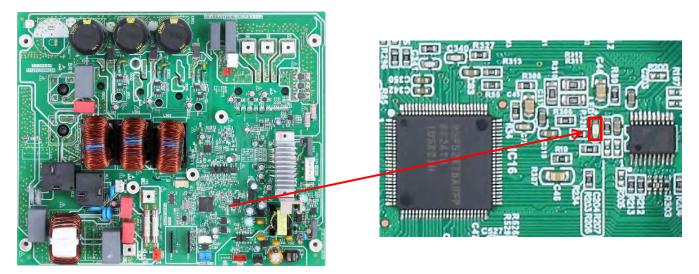
5.28.1 Digital display output

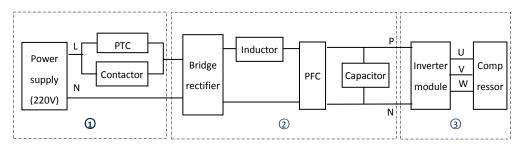
5.28.2 Description


- L0 indicates Inverter or compressor protection
 - L1 indicates DC bus low voltage protection
 - L2 indicates DC bus high voltage protection
 - L3 indicates current sampling error of PFC circuit
 - L4 indicates rotating stall protection
 - L5 indicates zero speed protection
 - L7 indicates phase loss protection of compressor
- Heat pump stops running.
- Specific error code L0, L1, L2, L3, L4, L5, L7 are displayed on the user interface and the main control board of refrigerant system.

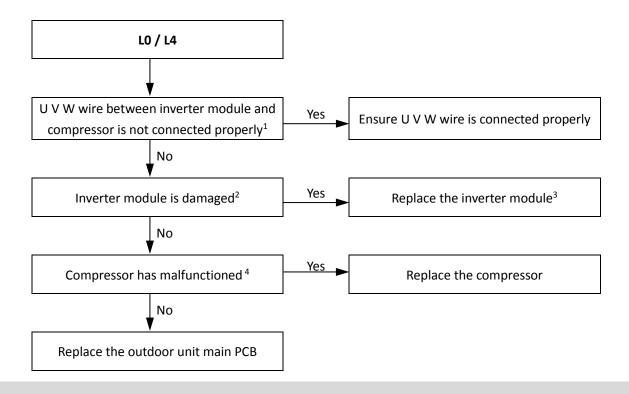
The specific error codes can also be obtained from the LED indicators on the inverter module.

LED1 flashing pattern (RED)	Corresponding error		
Flashes 1 times and stops for 0.4s, then repeats	LO indicates Inverter or compressor protection(overcurrent)		
Flashes 2 times and stops for 0.4s, then repeats	LO indicates Inverter or compressor protection(overheated)		
Flashes 3 times and stops for 0.4s, then repeats	L1 indicates DC bus low voltage protection		
Flashes 3 times and stops for 0.4s, then repeats	L2 indicates DC bus high voltage protection		
Flashes 4 times and stops for 0.4s, then repeats	L3 indicates current sampling error of PFC circuit		
Flashes 5 times and stops for 0.4s, then repeats	L4 indicates rotating stall protection		
Flashes 5 times and stops for 0.4s, then repeats	L5 indicates zero speed protection		
Flashes 6 times and stops for 0.4s, then repeats	L7 indicates phase loss protection of compressor		


LED location of inverter module Inverter Module(5-9KW): LED1

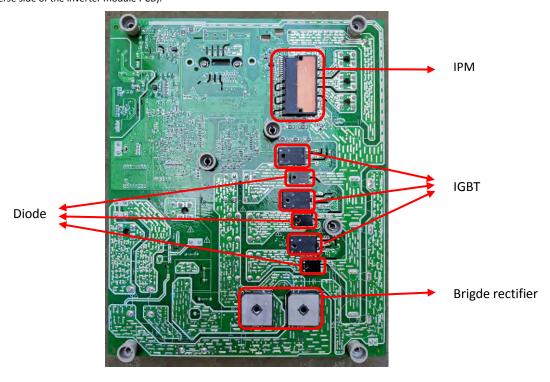


Inverter Module(12-16KW): LED:


5.28.3 Principle of DC inverter

- (1) Contactor is open, the current across the PTC to charge capacitor. After 5 seconds, the contactor closed.
- 2)220-240V AC power supply change to DC power supply after bridge rectifier.
- (3) The capacitor output steady power supply for inverter module P N terminals. In standby the voltage between P and N terminal on inverter module is 1.4 time of AC power supply. When the fan motor is running, the voltage is 380V DC.

5.28.4 LO/L4 troubleshooting

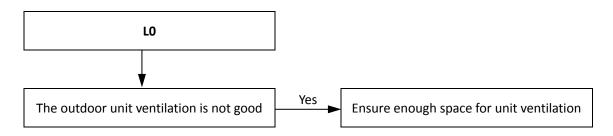

Situation 1: LO or L4 error appears immediately after the compressor starts up

Notes:

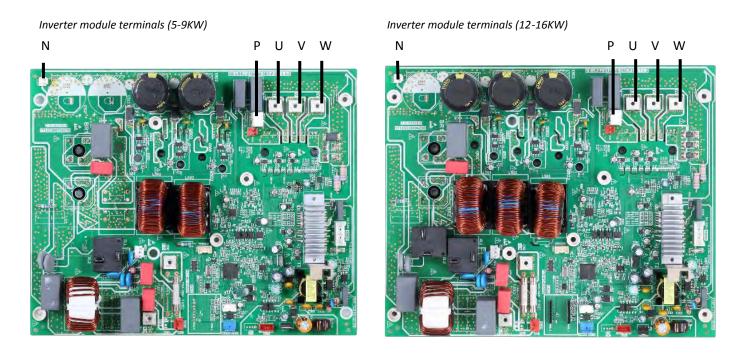
- 1. Connect the U V W wire from the inverter module to the correct compressor terminals, as indicated by the labels on the compressor.
- 2. Measure the resistance between each of U, V and W and each of P and N on the inverter module. All the resistances should be infinite. If any of them are not infinite, the inverter module is damaged and should be replaced.
- When replacing an inverter module, a layer of thermally conductive silica gel should be painted on the IPM module, IGBT, diode brigde rectifer (on the reverse side of the inverter module PCB).

4. The normal resistances of the inverter compressor are 0.7-1.5Ω among U V W and infinite between each of U V W and ground. If any of the resistances differ from these specifications, the compressor has malfunctioned.

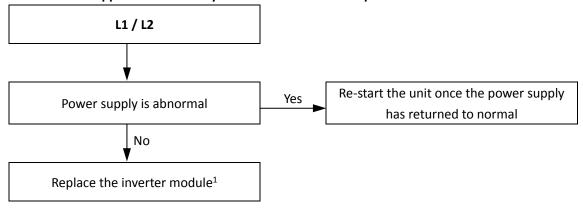
Situation 2: L0 or L4 error appears after the compressor has been running for a period of time and the compressor speed is over 60rps



Notes:


- 1. Use clip-on ammeter to measure the compressor current, if the current is normal indicates the inverter module is failed, if the current is abnormal indicates the compressor is failed.
- 2. When replacing an inverter module, a layer of thermally conductive silica gel should be painted on the PFC and IPM modules (on the reverse side of the inverter module PCB).

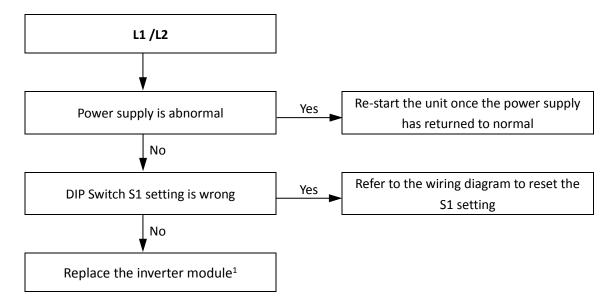
Situation 3: L0 error appears occasionally/irregularly



5.28.5 L1/L2 troubleshooting

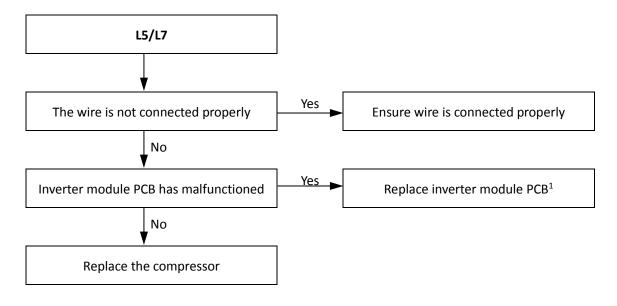
The normal DC voltage between terminals P and N on inverter module is 1.4 time of AC power supply in standby, the DC voltage is 377V when the fan motor is running. If the voltage is lower than 135V, the unit displays L1. If the voltage is higher than 500V, the unit display L2.

Situation 1: L1 or L2 error appears immediately after the outdoor unit is powered-on



Notes:

1. When replacing an inverter module, a layer of thermally conductive silica gel should be painted on the IPM module, IGBT, diode, brigde rectifer (on the reverse side of the inverter module PCB).


Situation 2: L1 or L2 error appears after the compressor has been running for a period of time and the compressor speed is over 20rps

Notes:

1. When replacing an inverter module, a layer of thermally conductive silica gel should be painted on IPM module (on the reverse side of the inverter module PCB).

5.28.6 L5/L7 troubleshooting

Note

1. When replacing an inverter module, a layer of thermally conductive silica gel should be painted on IPM module (on the reverse side of the inverter module PCB).

5.29 Inverter module Troubleshooting for three-phase models

5.29.1 Digital display output

5.29.2 Description

L0 indicates Inverter or compressor protection

L1 indicates DC bus low voltage protection

L2 indicates DC bus high voltage protection

L3 indicates current sampling error of PFC circuit

L4 indicates rotating stall protection

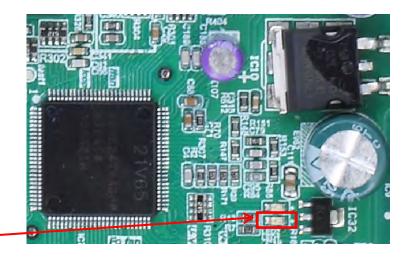
L5 indicates zero speed protection

L7 indicates phase loss protection of compressor

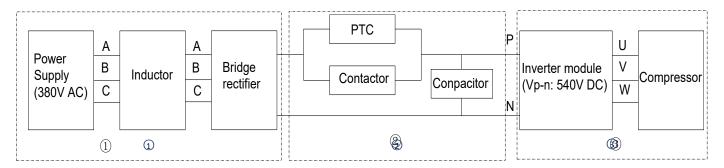
- Heat pump stops running.
- Specific error code L0, L1, L2, L3, L4, L5, L7 is displayed on the user interface and the refrigerant system PCB.

5.29.3 Possible causes

- Inverter module protection.
- DC bus low or high voltage protection.
- MCE error(DC bus low or high voltage protection or software over current protection)
- Zero speed protection.
- Excessive compressor frequency variation.
- Actual compressor frequency differs from target frequency.
- High pressure protection.
- Contactor stuck or 908 self checking fail.

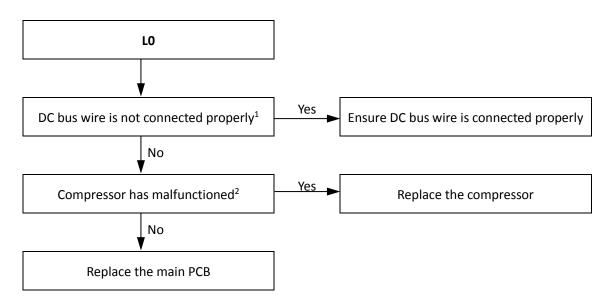

The specific error codes can also be obtained from the LED indicators on the inverter module.

LED1 flashing pattern (RED)	Corresponding error		
Flashes 1 times and stops for 0.4s, then repeats	LO indicates Inverter or compressor protection		
Flashes 2 times and stops for 0.4s, then repeats	LO indicates Inverter or compressor protection(overheated)		
Flashes 3 times and stops for 0.4s, then repeats	L1 indicates DC bus low voltage protection		
Flashes 3 times and stops for 0.4s, then repeats	L2 indicates DC bus high voltage protection		
Flashes 4 times and stops for 0.4s, then repeats	L3 indicates current sampling error of PFC circuit		
Flashes 5 times and stops for 0.4s, then repeats	L4 indicates rotating stall protection		
Flashes 5 times and stops for 0.4s, then repeats	L5 indicates zero speed protection		
Flashes 6 times and stops for 0.4s, then repeats	L7 indicates phase loss protection of compressor		



LED location of inveter module for three-phase 12~16kW unit

5.29.4 Principle of DC inverter



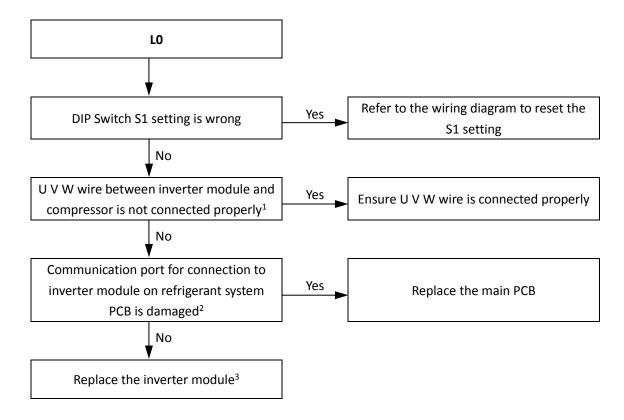
- ① 380-415V AC power supply change to DC power supply after bridge rectifier.
- 2 Contactor is open the current across the PTC to charge capacitor, after 5 seconds the contactor closed.
- 3 The capacitor output steady 540V DC power supply for inverter module P N terminals.

5.29.5 LO troubleshooting

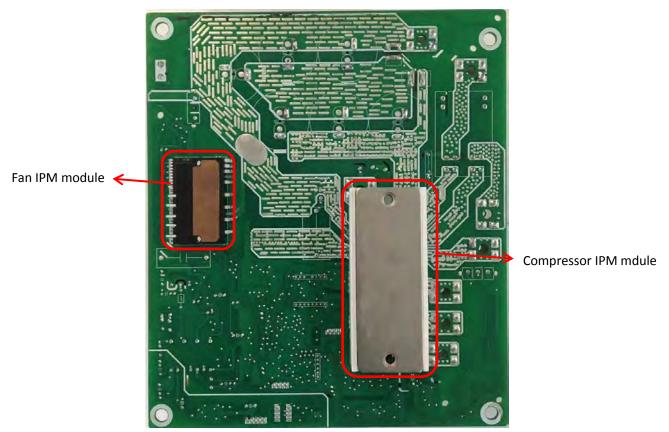
Situation 1: LO error appears immediately after the compressor starts up

Notes:

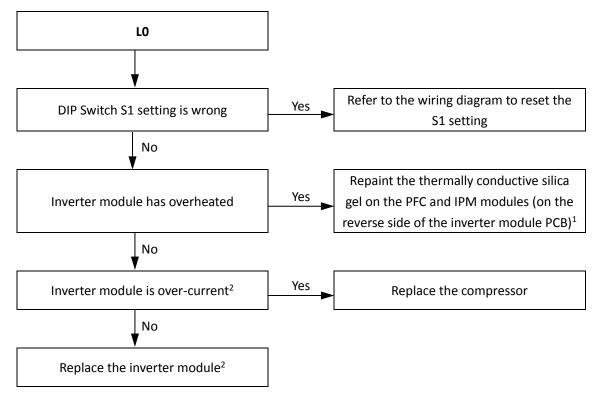
1. DC bus wire connection (L1L2L3,PIN-POUT)



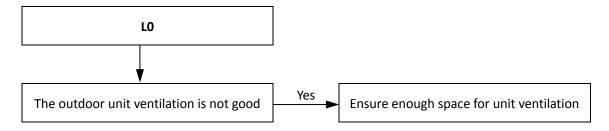
2. The normal resistances of the inverter compressor are $0.7-1.5\Omega$ among U V W and infinite between each of U V W and ground. If any of the resistances differ from these specifications, the compressor has malfunctioned.


MUND CLIMA®

Situation 2: L0 error appears within 2 seconds of compressor start-up


Notes:

- 1. Connect the U V W wire from the inverter module to the correct compressor terminals, as indicated by the labels on the compressor.
- 2. Measure the voltage between each of W-, W+, V-, V+, U- and GND when the unit is in standby. The normal voltage should be 2.5V-4V and the six voltages should be same, otherwise the communication terminal has failed.
- When replacing an inverter module, a layer of thermally conductive silica gel should be painted on the IPM module (on the reverse side of the inverter module PCB).


Condition 3: L0 error appears after the compressor has been running for a period of time and the compressor speed is over 60rps

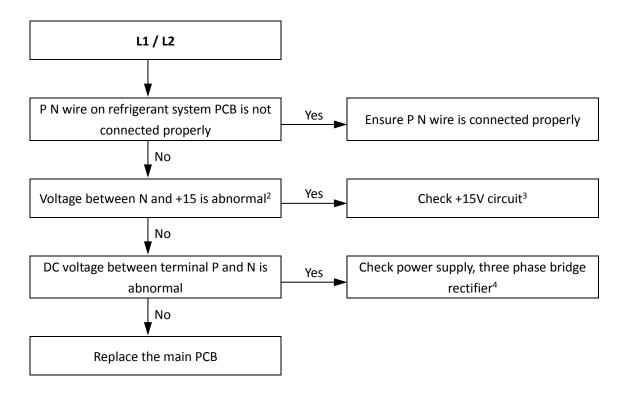
Notes:

- 1. When replacing an inverter module, a layer of thermally conductive silica gel should be painted on the IPM module (on the reverse side of the inverter module PCB).
- 2. Use clip-on ammeter to measure the compressor current, if the current is normal indicates the inverter module is failed, if the current is abnormal indicates the compressor has failed.

Situation 4: L0 error appears occasionally/irregularly

MUND CLIMA®

5.29.6 L1/L2 troubleshooting


The normal DC voltage between terminals P and N on inverter module is 540V. If the voltage is lower than 250V, the unit displays an L1 error; if the voltage is higher than 720V, the unit displays an L2 error.

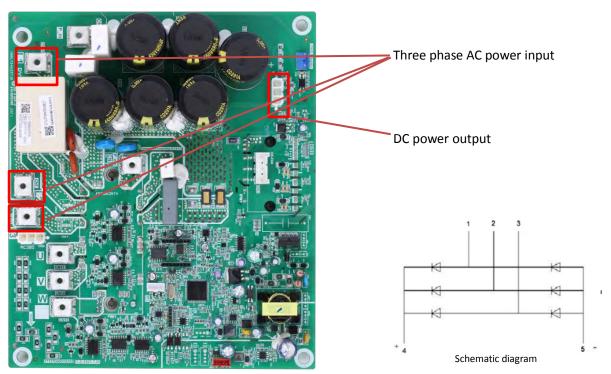
P, N terminals voltage

V_{normal} = 540V DC

Situation 1: L1 or L2 error appears immediately after the outdoor unit is powered-on

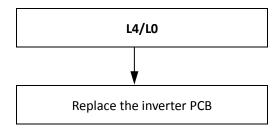
Notes:

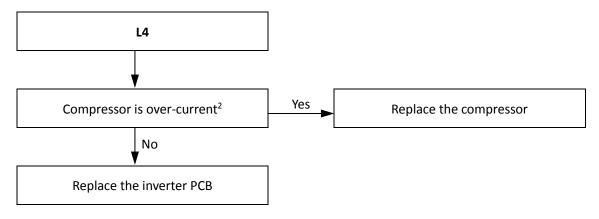
1. Voltage between N and +15.



P N +15V terminal-+15V (IC8/5/6PIN5); N- (IC/8/5, 6) PIN3

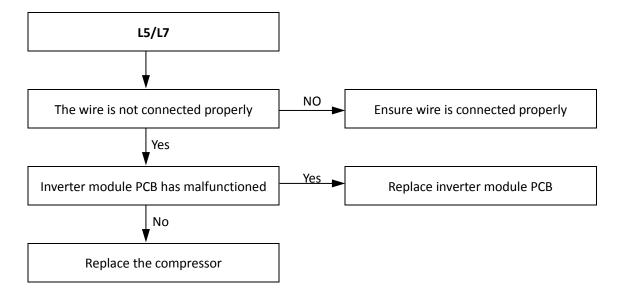
- 2. Check the +15V circuit according to corresponding wiring diagram. If IC8/5/6PIN5 on inverter module output voltage is not +15V means the inverter module is failed. If voltage output of inverter module is +15V means main PCB is failed.
- 3. Check the bridge rectifier using one of the following two methods
 - Method 1: measure the resistance between any two of the 5 bridge rectifier terminals. If any of the resistances is close to zero, the bridge rectifier
 has failed.
 - Method 2: dial a multimeter to the diode setting:
 - Put the red probe on the DC power output negative terminal (terminal 5) and put the black probe onto each of the AC power input terminals (terminals 1, 2 and 3) in turn. The voltage between terminal 5 and each of terminals 1, 2 and 3 should be around 0.378V. If the voltage is 0, the bridge rectifier has failed.
 - Put the red probe on the DC power output positive terminal (terminal 4), then put black probe onto each of the AC power input terminals (terminals 1, 2 and 3) in turn. The voltage between terminal 4 and each of terminals 1, 2 and 3 should be infinite. If the voltage is 0, the bridge rectifier has failed.


Bridge rectifier


MUND CLIMA®

5.29.7 L4 troubleshooting

Situation 1: L4/L0 error appears immediately after the outdoor unit is powered-on


Condition 2: L4 error appears after the compressor has been running for a period of time and the compressor speed is over 60rps

Notes:

1. Re-start the unit, use clip-on ammeter to measure the compressor current, if the current is normal indicates the compressor is failed, if the current is abnormal indicates the inverter PCB is failed.

5.29.8 L5/L7 troubleshooting

6 USB data transfer

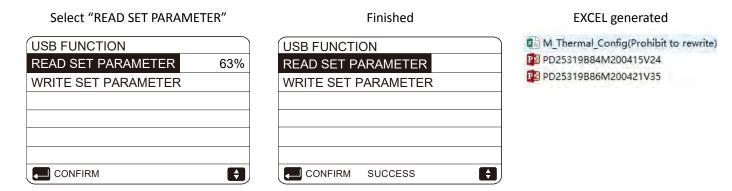
6.1 Parameters setting transfer between wired controllers

Installer can quickly copy the wired controller parameter settings from unit A to unit B via USB disk, which save the time of on-site installation. Steps are as follows:

Step 1:

Plug U disk into the port of hydro PCB of A unit.

"USb" appears on digital display

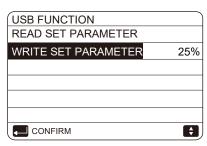


Wired controller interface automatically changes

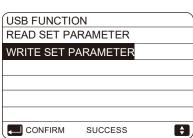
USB FUNCTION	
READ SET PARAMETER	
WRITE SET PARAMETER	
CONFIRM	†

Step 2:

Select "READ SET PARAMETER" and press "OK" button then rate of progress will appear. When the process is finished, "SUCCESS" appears below and an EXCEL file which can not be seen in the wired controller interface but users can find it on computer will be generated inside the USB disk.



After that, if parameter correction is needed, please connect the USB with computer and open the EXCEL file to change parameters and then save it. Please do not change the file name or format. Parameters are not allowed for non-professionals to change and Mundoclima recommends to use the wired controller to change the parameters.


Step 3:

Plug USB disk into the port of hydro PCB of B unit and select "WRITE SET PARAMETER" then rate of progress will appear. When the process is finished, "SUCCESS" appears below.

Select "WRITE SET PARAMETER"

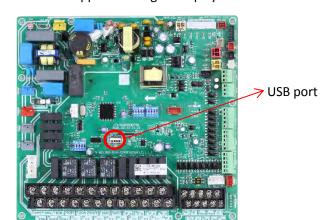
Finished

6.2 Convenient program upgrade for unit

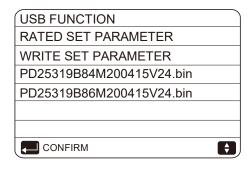
There is no need to carry any heavy equipment but only USB disk can realize program upgrade. Steps are as follows:

Step 1:

Copy new program in U disk root directory where other files in bin format are not allowed in

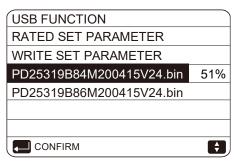

Step 2

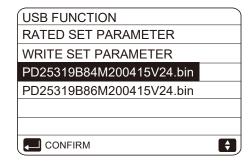
Power on and make sure communication is normal.


Step 3:

Plug U disk into the port of hydro PCB.

"USb" appears on digital display


Wired controller interface automatically changes


Step 4:

Please distinguish between programs for main control PCB and hydro PCB. Select one of them and press "OK" button then rate of progress appears. When the process is finished, "SUCCESS" appears below. For upgrading outdoor unit, the process normally lasts for several minutes while only few seconds is needed for indoor unit.

Select program

Finished

Step 5:

Pull out U disk and power on again to finish upgrading program. Check the program version to make sure upgrade is successful.

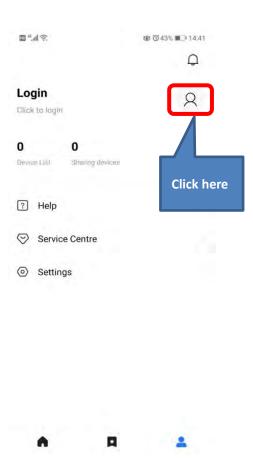
Check IDU & ODU software version

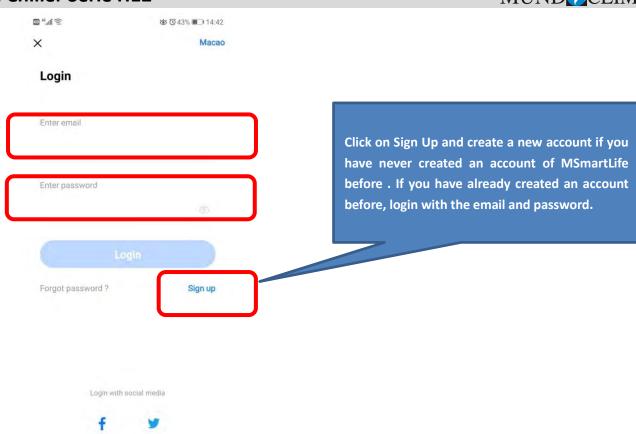
OPPERATION PARAM	METER	#00
IHB2 TOTAL RUN TIN	ΛE	0 Hrs
THB TOTAL RUN TIM	1E	Hrs
AHS TOTAL RUN TIM	1E	0 Hrs
IDU SOFTWARE	29-09-2	2021V15
ODU SOFTWARE	28-09-2	021V25
HMI SOFTWARE	16-10-2	021V19
◆ ADDRESS	10	/10 😝

7 Network Configuration Guidelines

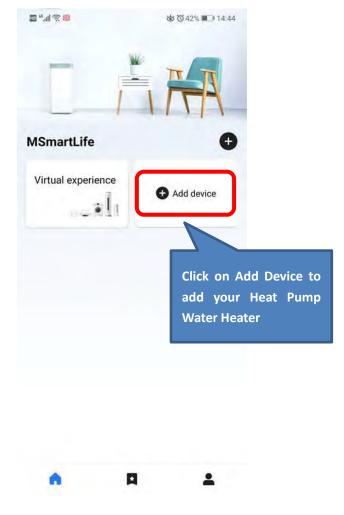
The wired controller realizes intelligent control with a built-in WIFI module, which receives control signal from the APP. Before connecting the WLAN, please check for it if the router in your environment is active and make sure that the wired controller is well-connected to the wireless signal. When the product is connected to the network, please make sure that the phone is as close as possible to the product. Mundoclima only supports 2.4GHz band routers at present. Special characters (punctuation, spaces, etc.) are not recommended as part of the WLAN name. It is recommended that you connect no more than 10 devices to a single router lest home appliances are affected by weak or unstable network signal. If the password of the router or WLAN is changed, clear all settings and reset the appliance. APP interface changes from time to time as APP is updated and may change slightly vary from those in this document.

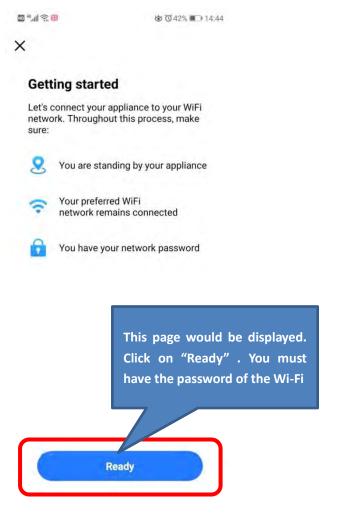
7.1 Install APP

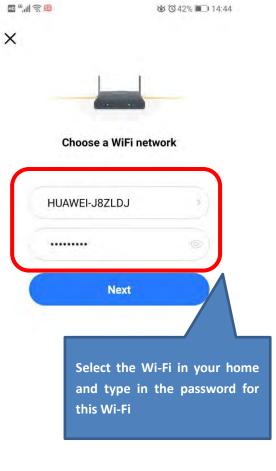

Scan the following QR code or research "MSmartLife" in APP STORE or GOOGLE PLAY to install the APP.

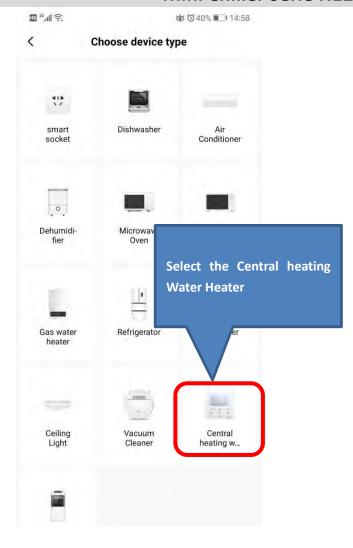

7.2 Sign in

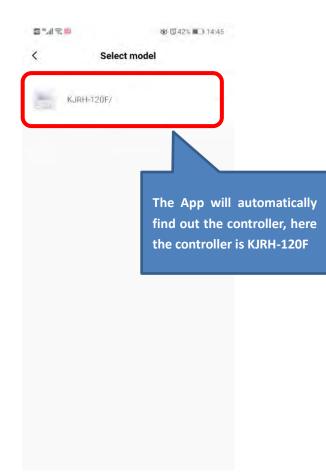
After installation, open the APP and login.





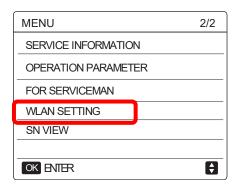

7.3 Add device and login to home Wi-Fi

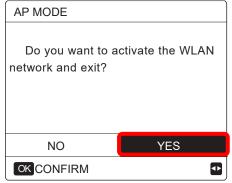


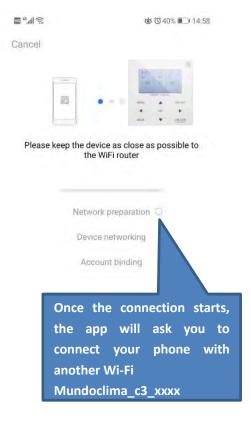


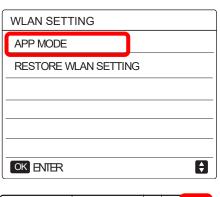
MUND CLIMA

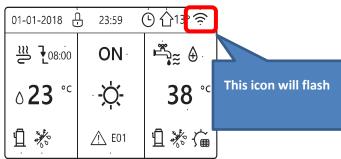
Mini Chiller Serie H12



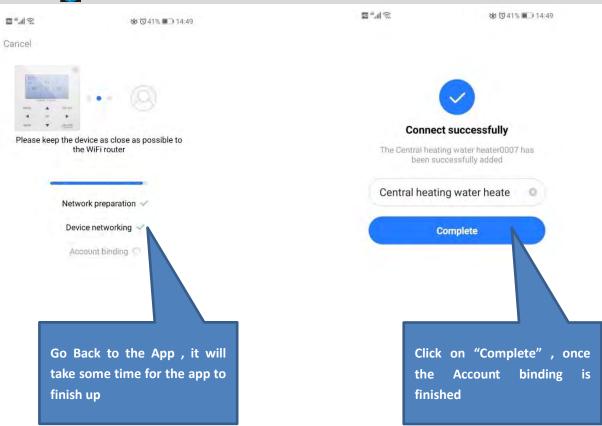


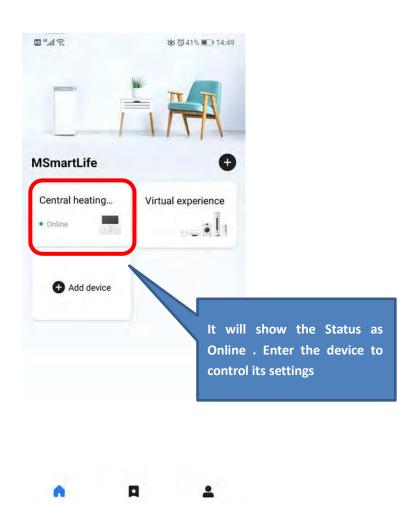

7.4 Wired Controller Setting


Go to "MENU"> "WLAN SETTING"> "AP MODE". Press "OK" to activate the WLAN, refer to Figure 3-8.1. Select YES, press OK to select AP mode. Select AP Mode correspondingly on the mobile device and continue the follow-up settings according to the APP prompts. During the Wireless distribution process, the LCD icon "\(\beta\)" flashes to indicate that the network is being deployed. After the process is completed, the icon "\(\beta\)" will be constantly on.



7.4.1 Connect to new Wi-Fi





Connect your appliance to WiFi

7.4.2 Finishing up

Resistance

(kΩ) 0.708

0.686

0.666

0.627

0.609

0.591

0.574

0.558

0.542

0.527

Temperature

(°C)

95

96 97

98

99 100

101

102

103

104

105

8 Temperature Sensor Resistance Characteristics

Outdoor ambient temperature sensor, water side heat exchanger refrigerant inlet / outlet (liquid / gas pipe) temperature sensor, air side heat exchanger refrigerant out temperature sensor and suction pipe temperature sensor resistance characteristics

Temperature	Resistance	Temperature	Resistance	ture sensor resista Temperature	Resistance
(°C)	(kΩ)	(°C)	(kΩ)	(°C)	(kΩ)
-25	144.266	15	16.079	55	2.841
-24	135.601	16	15.313	56	2.734
-23	127.507	17	14.588	57	2.632
-22	119.941	18	13.902	58	2.534
-21	112.867	19	13.251	59	2.44
-20	106.732	20	12.635	60	2.35
-19	100.552	21	12.05	61	2.264
-18	94.769	22	11.496	62	2.181
-17	89.353	23	10.971	63	2.102
-16	84.278	24	10.473	64	2.026
-15	79.521	25	10	65	1.953
-14	75.059	26	9.551	66	1.883
-13	70.873	27	9.125	67	1.816
-12	66.943	28	8.721	68	1.752
-11	63.252	29	8.337	69	1.69
-10	59.784	30	7.972	70	1.631
-9	56.524	31	7.625	71	1.574
-8	53.458	32	7.296	72	1.519
-7	50.575	33	6.982	73	1.466
-6	47.862	34	6.684	74	1.416
-5	45.308	35	6.401	75	1.367
-4	42.903	36	6.131	76	1.321
-3	40.638	37	5.874	77	1.276
-2	38.504	38	5.63	78	1.233
-1	36.492	39	5.397	79	1.191
0	34.596	40	5.175	80	1.151
1	32.807	41	4.964	81	1.113
2	31.12	42	4.763	82	1.076
3	29.528	43	4.571	83	1.041
4	28.026	44	4.387	84	1.007
5	26.608	45	4.213	85	0.974
6	25.268	46	4.046	86	0.942
7	24.003	47	3.887	87	0.912
8	22.808	48	3.735	88	0.883
9	21.678	49	3.59	89	0.855
10	20.61	50	3.451	90	0.828
11	19.601	51	3.318	91	0.802
12	18.646	52	3.191	92	0.777
13	17.743	53	3.069	93	0.753
14	16.888	54	2.952	94	0.73

Compressor disc	Compressor discharge pipe temperature sensor resistance characteristics						
Temperature	Resistance	Temperature	Resistance	Temperature	Resistance	Temperature	Resistance
(°C)	(kΩ)	(°C)	(kΩ)	(°C)	(kΩ)	(°C)	(kΩ)
-20	542.7	20	68.66	60	13.59	100	3.702
-19	511.9	21	65.62	61	13.11	101	3.595
-18	483.0	22	62.73	62	12.65	102	3.492
-17	455.9	23	59.98	63	12.21	103	3.392
-16	430.5	24	57.37	64	11.79	104	3.296
-15	406.7	25	54.89	65	11.38	105	3.203
-14	384.3	26	52.53	66	10.99	106	3.113
-13	363.3	27	50.28	67	10.61	107	3.025
-12	343.6	28	48.14	68	10.25	108	2.941
-11	325.1	29	46.11	69	9.902	109	2.860
-10	307.7	30	44.17	70	9.569	110	2.781
-9	291.3	31	42.33	71	9.248	111	2.704
-8	275.9	32	40.57	72	8.940	112	2.630
-7	261.4	33	38.89	73	8.643	113	2.559
-6	247.8	34	37.30	74	8.358	114	2.489
-5	234.9	35	35.78	75	8.084	115	2.422
-4	222.8	36	34.32	76	7.820	116	2.357
-3	211.4	37	32.94	77	7.566	117	2.294
-2	200.7	38	31.62	78	7.321	118	2.233
-1	190.5	39	30.36	79	7.086	119	2.174
0	180.9	40	29.15	80	6.859	120	2.117
1	171.9	41	28.00	81	6.641	121	2.061
2	163.3	42	26.90	82	6.430	122	2.007
3	155.2	43	25.86	83	6.228	123	1.955
4	147.6	44	24.85	84	6.033	124	1.905
5	140.4	45	23.89	85	5.844	125	1.856
6	133.5	46	22.89	86	5.663	126	1.808
7	127.1	47	22.10	87	5.488	127	1.762
8	121.0	48	21.26	88	5.320	128	1.717
9	115.2	49	20.46	89	5.157	129	1.674
10	109.8	50	19.69	90	5.000	130	1.632
11	104.6	51	18.96	91	4.849		
12	99.69	52	18.26	92	4.703	1	
13	95.05	53	17.58	93	4.562		
14	90.66	54	16.94	94	4.426		

15

16

17

18

19

86.49

82.54

78.79

75.24

71.86

55

56

57

58

59

16.32

15.73

15.16

14.62

14.09

95

96

97

98

99

4.294

4.167 4.045

3.927

3.812

Resistance $(k\Omega)$

4.4381

4.3022

4.1711

4.0446

3.9225

3.8046

3.6908

3.5810

3.4748

3.3724

3.2734

3.1777

3.0853

2.9960

2.9096

2.8262

Temperature

(°C)

90

91 92

93

94

95

96

97

98

99

100

101

102

103

104

105

Water side heat exchanger water inlet / outlet temperature sensor, final outlet water temperature sensor and DHW temperature sensor resistance characteristics

Temperature (°C)	Resistance (kΩ)	Temperature (°C)	Resistance (kΩ)	Temperature (°C)	Resistance (kΩ)
-30	867.29	10	98.227	50	17.600
-29	815.80	11	93.634	51	16.943
-2 3 -28	767.68	12	89.278	52	16.315
-28 -27	707.08	13	85.146	53	15.713
-26	680.54	14	81.225	54	15.136
-25 -25	641.07	15	77.504	55	14.583
-23	604.08	16	77.304	56	14.054
-23	569.39	17	70.619	57	13.546
-23	536.85	18	67.434	58	13.059
-22 -21		19		59	
	506.33	20	64.409		12.592
-20	477.69		61.535	60	12.144
-19	450.81	21	58.804	61	11.715
-18	425.59	22	56.209	62	11.302
-17	401.91	23	53.742	63	10.906
-16	379.69	24	51.396	64	10.526
-15	358.83	25	49.165	65	10.161
-14	339.24	26	47.043	66	9.8105
-13	320.85	27	45.025	67	9.4736
-12	303.56	28	43.104	68	9.1498
-11	287.33	29	41.276	69	8.8387
-10	272.06	30	39.535	70	8.5396
-9	257.71	31	37.878	71	8.2520
-8	244.21	32	36.299	72	7.9755
-7	231.51	33	34.796	73	7.7094
-6	219.55	34	33.363	74	7.4536
-5	208.28	35	31.977	75	7.2073
-4	197.67	36	30.695	76	6.9704
-3	187.66	37	29.453	77	6.7423
-2	178.22	38	28.269	78	6.5228
-1	168.31	39	27.139	79	6.3114
0	160.90	40	26.061	80	6.1078
1	152.96	41	25.031	81	5.9117
2	145.45	42	24.048	82	5.7228
3	138.35	43	23.109	83	5.5409
4	131.64	44	22.212	84	5.3655
5	125.28	45	21.355	85	5.1965
6	119.27	46	20.536	86	5.0336
7	113.58	47	19.752	87	4.8765
8	108.18	48	19.003	88	4.7251
9	103.07	49	18.286	89	4.5790

SALVADOR ESCODA SA ROSSELLÓ 430-432 08025 BARCELONA ESPAÑA / SPAIN SAT: (+34) 93 652 53 57