

BIBLOC UNIT - AEROTHERM V17 Service Manual

Thank you very much for purchasing our product. Before using your unit, please read this manual carefully and keep it for future reference. 2nd Version SO30160 to SO30172 English

CONTENTS

Part	1	General Information	. 3
Part	2	Component Layout and Refrigerant Circuits	. 5
Part	3	Control1	13
Part	4	Diagnosis and Troubleshooting	27

Part 1

General Information

1 Unit Capacities	4
•	
2 External Annearance	5

1 Unit Capacities

1.1 Outdoor Unit Capacities

Table 1-1.1: Capacity range

Capacity	4kW	6kW	8kW	10kW	12kW	14kW	16kW
BIBLOC V17 (1Ph)	SO30160	SO30161	SO30162	SO30163	SO30164	SO30165	SO30166

Capacity	12kW	14kW	16kW		
BIBLOC V17 (3Ph)	SO30167	SO30168	SO30169		

1.2 Hydronic Box Capacities

Table 1-2.1: Capacity range

Capacity	8kW	16kW	16kW
Model	SO30170	SO30171	SO30172
Compatible OU model	SO30160 to SO30161	SO30163 to SO30166	SO30167 to SO30169

2 External Appearance

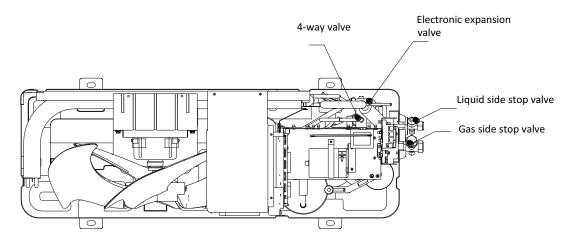
2.1 Outdoor Unit Appearance

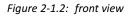
Table 1-2.1: Outdoor unit appearance

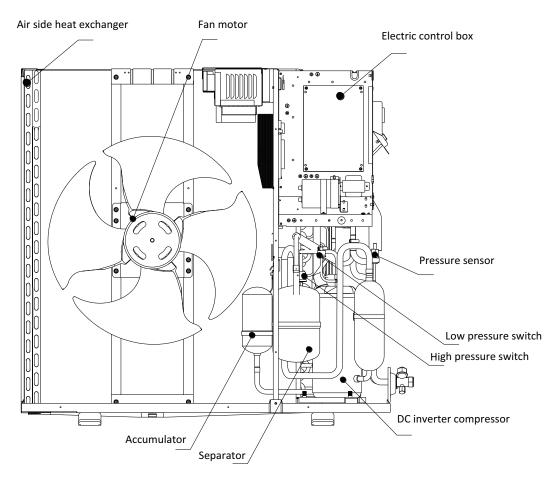
2.2 Hydronic Box Appearance

Table 1-2.1: Hydronic box appearance

Part 2 Component Layout and Refrigerant Circuits


1	Layout of Functional Components 6
2	Piping Diagrams9
3	Refrigerant Flow Diagrams


1 Layout of Functional Components

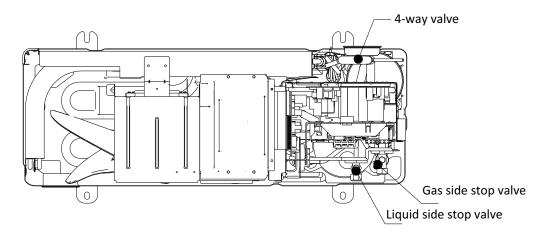
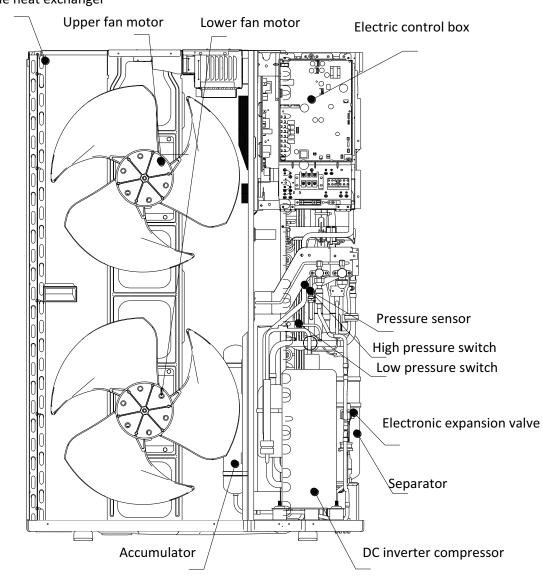

1.1 Outdoor Unit Layout

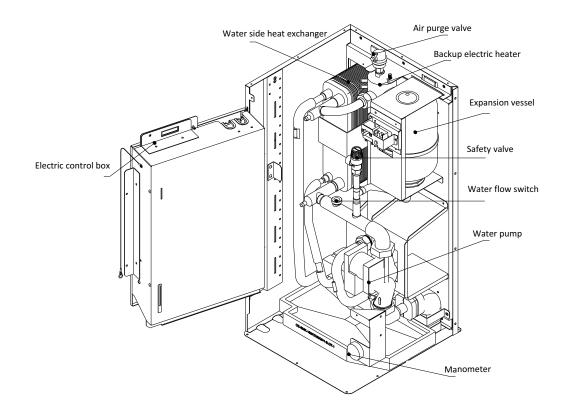
Models 4 to 8kW

Figure 2-1.1:top view

Models 10 to 16kW

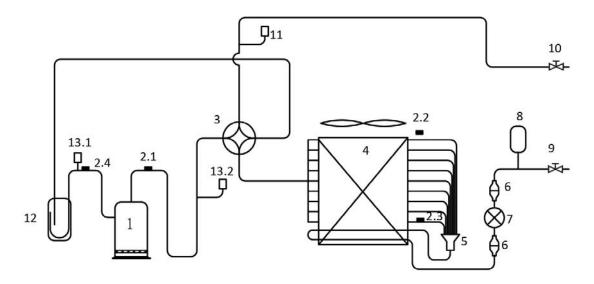
Figure 2-1.4: top view


Figure 2-1.5: front view

Air side heat exchanger

1.2 Hydronic Box Layout


Figure 2-1.6: oblique view

2 Piping Diagrams

2.1 Outdoor Unit Piping Models 4 to 8kW

Figure 2-2.1: piping diagram

Legend			
1	Compressor	7	Electronic expansion valve
2.1	Discharge pipe temperature sensor	8	Accumulator
2.2	Outdoor ambient temperature sensor	9	Stop valve (liquid side)
2.3	Air side heat exchanger refrigerant outlet temperature sensor	10	Stop valve (gas side)
2.4	Suction pipe temperature sensor	11	Pressure sensor
3	4-way valve	12	Separator
4	Air side heat exchanger	13.1	Low pressure switch
5	Distributor	13.2	High pressure switch
6	Filter		

Key components:

1. Accumulator:

Stores liquid refrigerant and oil to protect compressor from liquid hammering.

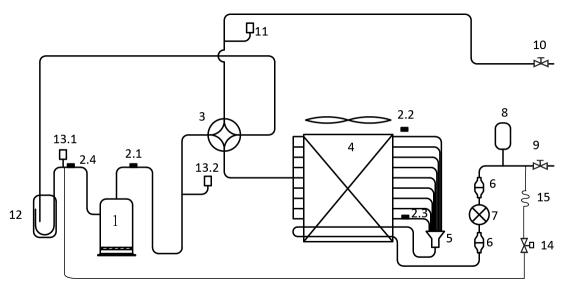
2. Electronic expansion valve (EXV):

Controls refrigerant flow and reduces refrigerant pressure.

3. Four-way valve:

Controls refrigerant flow direction. Closed in cooling mode and open in heating mode. When closed, the air side heat exchanger functions as a condenser and water side heat exchanger functions as an evaporator; when open, the air side heat exchanger functions as an evaporator and water side heat exchanger function as a condenser.

4. High and low pressure switches:


Regulate refrigerant system pressure. When refrigerant system pressure rises above the upper limit or falls below the lower limit, the high or low pressure switches turn off, stopping the compressor.

5. Separator:

Separates liquid refrigerant from gas refrigerant to protect compressor from liquid hammering.

Models 10 to 16kW

Figure 2-2.2: piping diagram

Legend			
1	Compressor	8	Accumulator
2.1	Discharge pipe temperature sensor	9	Stop valve (liquid side)
2.2	Outdoor ambient temperature sensor	10	Stop valve (gas side)
2.3	Air side heat exchanger refrigerant outlet temperature sensor	11	Pressure sensor
2.4	Suction pipe temperature sensor	12	Separator
3	4-way valve	13.1	Low pressure switch
4	Air side heat exchanger	13.2	High pressure switch
5	Distributor	14	Solenoid valve
6	Filter	15	Capillary
7	Electronic expansion valve		

Key components:

6. Accumulator:

Stores liquid refrigerant and oil to protect compressor from liquid hammering.

7. Electronic expansion valve (EXV):

Controls refrigerant flow and reduces refrigerant pressure.

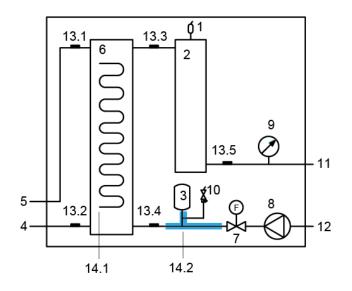
8. Four-way valve:

Controls refrigerant flow direction. Closed in cooling mode and open in heating mode. When closed, the air side heat exchanger functions as a condenser and water side heat exchanger functions as an evaporator; when open, the air side heat exchanger function as a condenser.

9. High and low pressure switches:

Regulate refrigerant system pressure. When refrigerant system pressure rises above the upper limit or falls below the lower limit, the high or low pressure switches turn off, stopping the compressor.

10. Separator:


Separates liquid refrigerant from gas refrigerant to protect compressor from liquid hammering.

11. Solenoid valve:

Protects the compressor. If compressor discharge temperature rises above 100°C, 6. Solenoid valve opens and sprays a small amount of liquid refrigerant to cool the compressor. Solenoid valve closes again once the discharge temperature has fallen below 90°C.

2.2 Hydronic box Piping

Figure 2-2.1: piping diagram

Legen	d		
1	Air purge valve	11	Water outlet
2	Backup electric heater	12	Water inlet
3	Expansion vessel		Water side heat exchanger refrigerant outlet (gas pipe) temperature
3		13.1	sensor
4	Refrigerant liquid side	13.2	Water side heat exchanger refrigerant inlet (liquid pipe) temperature
4	Kenigerant liquid side	15.2	sensor
5	Refrigerant gas side	13.3	Water side heat exchanger water outlet temperature sensor
6	Water side heat exchanger	13.4	Water side heat exchanger water inlet temperature sensor
7	Water flow switch	13.5	Backup electric heater water outlet temperature sensor
8	Water pump	14.1	Anti-frozen electric heater for water side heat exchanger
9	Manometer	14.2	Anti-frozen electric heater for water inlet pipe
10	Safety valve		

Key components:

1. Air purge valve:

Automatically removes air from the water circuit.

2. Safety valve:

Prevents excessive water pressure by opening at 43.5 psi (3 bar) and discharging water from the water circuit.

3. Expansion vessel:

Balances water system pressure. (Expansion vessel volume: 3L.)

4. Water flow switch:

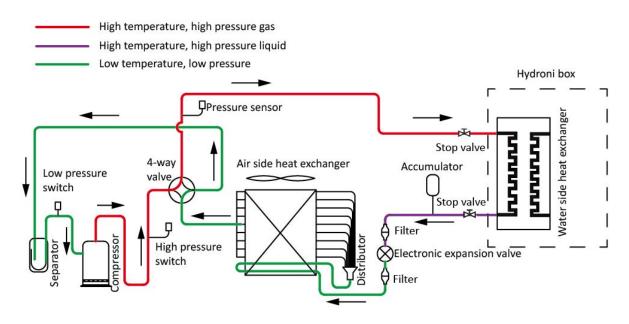
Detects water flow rate to protect compressor and water pump in the event of insufficient water flow.

5. Backup electric heater:

Provides additional heating capacity when the heating capacity of the heat pump is insufficient due to very low outdoor temperature. Also protects the external water piping from freezing.

6. Manometer:

Provides water circuit pressure readout.


7. Water pump:

Circulates water in the water circuit.

3 Refrigerant Flow Diagrams

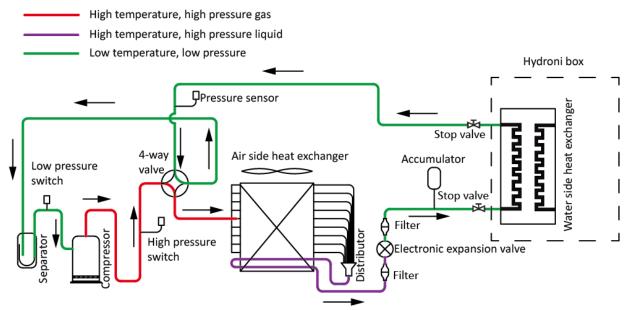

Heating and domestic hot water operation

Figure 2-3.1: Refrigerant flow during heating or domestic hot water operation

Cooling and defrosting operation

Figure 2-3.2: Refrigerant flow during cooling and defrosting operations

Part 3 Control

1 Stop Operation	14
2 Standby Control	14
3 Startup Control	15
4 Normal Operation Control	17
5 Protection Control	19
6 Special Control	22
7 Role of Temperature Sensors in Control Functions	24

1 Stop Operation

The stop operation occurs for one of the following reasons:

- 1. Abnormal shutdown: in order to protect the compressors, if an abnormal state occurs the system makes a 'stop with thermo off' operation and an error code is displayed on the outdoor unit PCB digital displays and on the user interface.
- 2. The system stops when the set temperature has been reached.

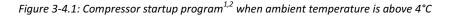
2 Standby Control

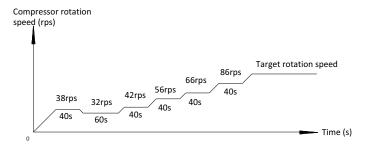
2.1 Crankcase Heater Control

The crankcase heater is used to prevent refrigerant from mixing with compressor oil when the compressors are stopped. The crankcase heater is controlled according to outdoor ambient temperature and the compressor on/off state. When the outdoor ambient temperature is above 8°C or the compressor is running, the crankcase heater is off; when the outdoor ambient temperature is at or below 8°C and either the compressor has been stopped for more than 3 hours or the unit has just been powered-on (either manually or when the power has returned following a power outage), the crankcase heater turns on.

2.2 Water Pump Control

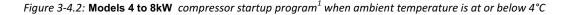
When the outdoor unit is in standby, the internal and external circulator pumps run continuously.

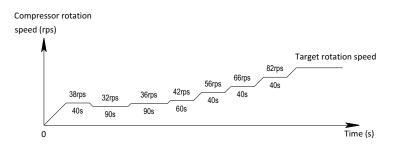

3 Startup Control


3.1 Compressor Startup Delay Control

In initial startup control and in restart control (except in oil return operation and defrosting operation), compressor startup is delayed such that a minimum of the set re-start delay time has elapsed since the compressor stopped, in order to prevent frequent compressor on/off and to equalize the pressure within the refrigerant system. The compressor re-start delays for cooling and heating modes are set on the user interface. Refer to the M-Thermal Split Engineering Data Book Part 3, 8.5 "COOL MODE SETTING Menu" and Part 3, 8.6 "HEAT MODE SETTING Menu".

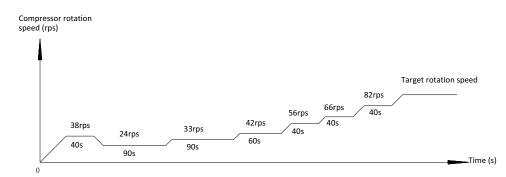
3.2 Compressor Startup Program


In initial startup control and in re-start control, compressor startup is controlled according to outdoor ambient temperature. Compressor startup follows one of two startup programs until the target rotation speed is reached. Refer to Figures 3-4.1, 3-4.2 and 3-4.3.



Notes:

- 1. Once the first, 40-second stage of the program is complete, the program proceeds to the subsequent stages in a step-by-step fashion and exits when the target rotation speed has been reached.
- 2. This program is used on all M-Thermal Split models: 4kW to 16kW, single phase and three phase.



Notes:

1. Once the first, 40-second stage of the program is complete, the program proceeds to the subsequent stages in a step-by-step fashion and exits when the target rotation speed has been reached.

Figure 3-4.3: Models 10 to 16kW compressor startup program¹ when

ambient temperature is at or below 4°C

Notes:

1. Once the first, 40-second stage of the program is complete, the program proceeds to the subsequent stages in a step-by-step fashion and exits when the target rotation speed has been reached.

3.3 Startup Control for Heating and Domestic Hot Water Operation

Table 3-4.1: Component control during startup in heating and domestic hot water modes

Component	Wiring diagram label	4-8kW	10-16kW	Control functions and states
Inverter compressor	COMP	•	•	Compressor startup program selected according to ambient temperature ¹
DC fan motor / Upper DC fan motor	FAN1 / FAN_UP	•	•	-
Lower DC fan motor	FAN_DOWN		•	Fan run at maximum speed ²
Electronic expansion valve	EXV	•	•	Position (steps) from 0 (fully closed) to 480 (fully open), controlled according to outdoor ambient temperature, discharge temperature and suction superheat
Four-way valve	ST	•	•	On

Notes:

1. Refer to Figure 3-4.1, Figure 3-4.2 and Figure 3-4.3 in Part 3, 4.2 "Compressor Startup Program".

2. Refer to Table 3-5.3 in Part 3, 5.6 "Outdoor Fan Control".

3.4 Startup Control for Cooling Operation

Table 3-4.2: Component control during startup in cooling mode

Component	Wiring diagram label	4-8kW	10-16kW	Control functions and states
Inverter compressor	COMP	•	•	Compressor startup program selected according to ambient temperature ¹
DC fan motor / Upper DC fan motor	FAN1 / FAN_UP	•	•	For much an eliment of the second sec
Lower DC fan motor	FAN_DOWN		•	Fan run at maximum speed ²
Electronic expansion valve	EXV	•	•	Position (steps) from 0 (fully closed) to 480 (fully open), controlled according to outdoor ambient temperature, discharge temperature and suction superheat
Four-way valve	ST	•	•	Off

Notes:

1. Refer to Figure 3-4.1, Figure 3-4.2 and Figure 3-4.3 in Part 3, 4.2 "Compressor Startup Program".

2. Refer to Table 3-5.3 in Part 3, 5.6 "Outdoor Fan Control".

4 Normal Operation Control

4.1 Component Control during Normal Operation

Table 3-5.1: Component control during heating and domestic hot water operations

Component	Wiring diagram label	4-8kW	10-16kW	Control functions and states
Inverter compressor	COMP	•	•	Controlled according to load requirement from hydronic system
DC fan motor / Upper DC fan motor	FAN1 / FAN_UP	٠	٠	Controlled according to outdoor heat exchanger
Lower DC fan motor	FAN_DOWN		٠	pipe temperature
Electronic expansion valve	EXV	•	•	Position (steps) from 0 (fully closed) to 480 (fully open), controlled according to discharge temperature, suction superheat and compressor speed
Four-way valve	ST	•	•	On

Table 3-5.2: Component control during cooling operation

Component	Wiring diagram label	4-8kW	10-16kW	Control functions and states
Inverter compressor	COMP	•	•	Controlled according to load requirement from hydronic system
DC fan motor / Upper DC fan motor	FAN1 / FAN_UP	٠	•	Controlled according to outdoor heat exchanger pipe
Lower DC fan motor	FAN_DOWN		•	temperature
Electronic expansion valve	EXV	•	•	Position (steps) from 0 (fully closed) to 480 (fully open), controlled according to discharge temperature, suction superheat and compressor speed
Four-way valve	ST	•	•	Off

4.2 Compressor Output Control

The compressor rotation speed is controlled according to the load requirement. Before compressor startup, the M-Thermal Split outdoor unit determines the compressor target speed according to outdoor ambient temperature, leaving water set temperature and actual leaving water temperature and then runs the appropriate compressor startup program. Refer to Part 3, 4.2 "Compressor Startup Program". Once the startup program is complete, the compressor runs at the target rotation speed.

During operation the compressor speed is controlled according to the rate of change in water temperature, the refrigerant system pressure and the refrigerant temperature.

4.3 Compressor Step Control

The running speed of four-pole compressors (used on 5-7kW models) in rotations per second (rps) is half the frequency (in Hz) of the electrical input to the compressor motor. The running speed of six-pole compressors (used on all other models) in rotations per second (rps) is one third of the frequency (in Hz) of the electrical input to the compressor motor. The frequency of the electrical input to the compressor motors can be altered at a rate of 1Hz per second.

4.4 Four way Valve Control

The four-way valve is used to change the direction of refrigerant flow through the water side heat exchanger in order to switch between cooling and heating/DHW operations. Refer to Figures 2-3.1 and 2-3.2 in Part 2, 3 "Refrigerant Flow Diagrams".

During heating and DHW operations, the four-way valve is on; during cooling and defrosting operations, the four-way valve is off.

4.5 Electronic Expansion Valve Control

The position of the electronic expansion valve (EXV) is controlled in steps from 0 (fully closed) to 480 (fully open).

- At power-on:
 - The EXV first closes fully, then moves to the standby position (304 (steps)). After 30 seconds the EXV moves to an
 initial running position, which is determined according to operating mode and outdoor ambient temperature.
 After a further 150 seconds, the EXV is controlled according to suction superheat and discharge temperature.
 Once a further 6 minutes have elapsed, the EXV is then controlled according to suction superheat, discharge
 temperature and compressor speed.
- When the outdoor unit is in standby:
 - The EXV is at position 304 (steps).
- When the outdoor unit stops:
 - The EXV first closes fully, then moves to the standby position (304 (steps)).

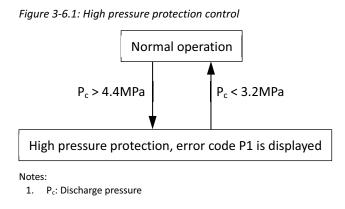
4.6 Outdoor Fan Control

The speed of the outdoor unit fan(s) is adjusted in steps, as shown in Table 3-5.3.

		Fan speed (rpm)								
Fan speed index		CLAN	8kW	10-16k	W (1Ph)	12-16kW (3Ph)				
	4kW	6kW		Upper fan ¹	Lower fan ²	Upper fan ¹	Lower fan ²			
0	0	0	0	0	0	0	0			
1	300	300	300	300	-	300	-			
2	340	340	340	330	300	330	300			
3	400	400	400	400	380	400	380			
4	450	450	450	460	440	460	440			
5	520	520	520	520	500	520	500			
6	600	600	600	630	610	630	610			
7	680	680	680	780	760	780	760			
8	730	730	730	-	-	-	-			
9	800	800	800	-	-	-	-			

Table 3-5.3: Outdoor fan speed steps

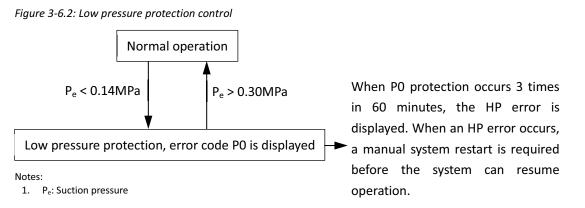
Notes:


1. The upper fan is labelled FAN_UP in the wiring diagram. Refer to the M-Thermal Split Engineering Data Book Part 2, 4 "Wiring diagram".

2. The lower fan is labelled FAN_DOWN in the wiring diagram. Refer to the M-Thermal Split Engineering Data Book Part 2, 4 "Wiring diagram".

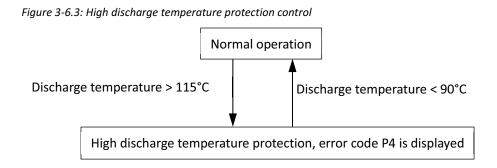
5 Protection Control

5.1 High Pressure Protection Control

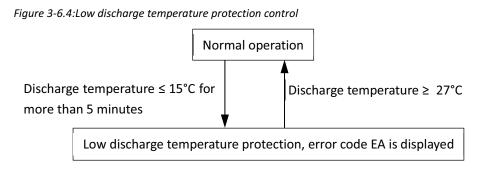

This control protects the refrigerant system from abnormally high pressure and protects the compressor from transient spikes in pressure.

When the discharge pressure rises above 4.4MPa the system displays P1 protection and the unit stops running. When the discharge pressure drops below 3.2MPa, the compressor enters re-start control.

5.2 Low Pressure Protection Control


This control protects the refrigerant system from abnormally low pressure and protects the compressor from transient drops in pressure.

When the suction pressure drops below 0.14MPa the system displays P0 protection and the unit stops running. When the suction pressure rises above 0.3MPa, the compressor enters re-start control.


5.3 Discharge Temperature Protection Control

This control protects the compressor from abnormally high temperatures and transient spikes in temperature.

When the discharge temperature rises above 115°C the system displays P4 protection and the unit stops running. When 201703 19

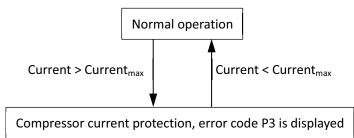
the discharge temperature drops below 90°C, the compressor enters re-start control.

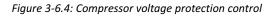
When the discharge temperature is at or below 15°C for more than 5 minutes, the system displays EA protection and the unit stops running. When the discharge temperature rises to 27°C or higher, the compressor enters re-start control.

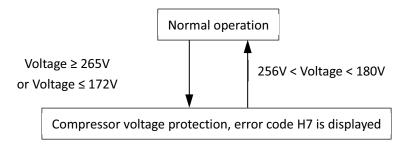
5.4 Compressor Current Protection Control

This control protects the compressor from abnormally high currents.

Figure 3-6.5: Compressor current protection control




Table 3-6.1: Current limitation for compressors


Model name	Models 4 and 6kW	Model 8kW	Models 10 to 16kW (1Ph)	Models 10 to 16kW (3Ph)
Compressor model	SNB172FJFMC	ATF250D22UMT	ATQ420D1UMU	ATQ420D2UMU
Current _{max}	18A	20A	31A	15A

When the compressor current rises above $Current_{max}$ the system displays P3 protection and the unit stops running. When the compressor current drops below $Current_{max}$, the compressor enters re-start control.

5.5 Voltage Protection Control

This control protects the M-Thermal Split from abnormally high or abnormally low voltages.

When the phase voltage of AC power supply is at or above 265V for more than 30 seconds, the system displays H7 protection and the unit stops running. When the phase voltage drops below 265V for more than 30 seconds, the

refrigerant system restarts once the compressor re-start delay has elapsed. When the phase voltage is below 172V, the system displays H7 protection and the unit stops running. When the AC voltage rises to more than 180V, the refrigerant system restarts once the compressor re-start delay has elapsed.

5.6 DC Fan Motor Protection Control

This control protects the DC fan motors from strong winds and abnormal power supply. DC fan motor protection occurs when any one of the following the following three sets of conditions are met:

- Outdoor ambient temperature is at or above 4°C and actual fan speed differs from target fan speed by 200rpm or more for more than 3 minutes.
- Outdoor ambient temperature is below 4°C and actual fan speed differs from target fan speed by 300rpm or more for more than 3 minutes.
- Actual fan speed is less than 240rpm for more than 20 seconds.

When DC fan motor protection control occurs the system displays the H6 error code and the unit stops running. After 3 minutes, the unit restarts automatically. When H6 protection occurs 10 times in 120 minutes, the HH error is displayed. When an HH error occurs, a manual system restart is required before the system can resume operation.

5.7 Water Side Heat Exchanger Anti-freeze Protection Control

This control protects the water side heat exchanger from ice formation. The water side heat exchanger electric heater is controlled according to outdoor ambient temperature, water side heat exchanger water inlet temperature and water side heat exchanger water outlet temperature.

In heating mode, if the outdoor temperature falls below 3°C and either the water side heat exchanger water inlet temperature or water side heat exchanger water outlet temperature are below 25°C, the water side heat exchanger electric heater turns on. When the outdoor ambient temperature rises above 5°C and either the water side heat exchanger water inlet temperature or water side heat exchanger water outlet temperature are above 30°C, the water side heat exchanger exchanger turns off.

When water side heat exchanger anti-freeze protection occurs the system displays error code Pb and the unit stops running.

6 Special Control

6.1 Oil Return Operation

In order to prevent the compressor from running out of oil, the oil return operation is conducted to recover oil that has flowed out of the compressor and into the refrigerant piping. When the oil return operation is being conducted, the outdoor unit refrigerant system main PCB displays code d0.

Timing of oil return operation:

• When the compressor cumulative operating time with running rotation speed less than 42rps reaches 6 hours.

The oil return operation ceases when any one of the following three conditions occurs:

- Oil return operation duration reaches 5 minutes.
- Compressor stops.
- Mode change command is received.

Tables 3-7.1 show component control during oil return operation in cooling mode.

Component	Wiring diagram label	4-8kW	10-16kW	Control functions and states
Inverter compressor	COMP	•	•	Runs at oil return operation rotation speed
DC fan motor / Upper DC fan motor	FAN1 / FAN_UP	•	•	Controlled according to outdoor heat exchanger pipe
Lower DC fan motor	FAN_DOWN		•	temperature
Electronic expansion valve	EXV	•	•	304 (steps)
Four-way valve	ST	•	•	Off

Table 3-7.1: Outdoor unit component control during oil return operation in cooling mode

 Table 3-7.2: Outdoor unit component control during oil return operation in heating and DHW modes

Component	Wiring diagram label	4-8kW	10-16kW	Control functions and states
Inverter compressor	COMP	•	•	Runs at oil return operation rotation speed
DC fan motor / Upper DC fan motor	FAN1 / FAN_UP	•	•	Controlled according to outdoor heat exchanger pipe
Lower DC fan motor	FAN_DOWN		•	temperature
Electronic expansion valve	EXV	•	•	304 (steps)
Four-way valve	ST	٠	•	On

6.2 Defrosting Operation

In order to recover heating capacity, the defrosting operation is conducted when the outdoor unit air side heat exchanger is performing as a condenser. The defrosting operation is controlled according to outdoor ambient temperature, air side heat exchanger refrigerant outlet temperature and the compressor running time.

The defrosting operation ceases when any one of the following three conditions occurs:

- Defrosting operation duration reaches 10 minutes.
- The air side heat exchanger refrigerant outlet temperature is above 8°C for more than 10 seconds.
- The air side heat exchanger refrigerant outlet temperature is above 10°C.

Table 3-7.3: Component control during defrosting operation

Component	Wiring diagram label	4-8kW	10-16kW	Control functions and states
Inverter compressor	COMP	•	•	Runs at defrosting operation rotation speed
DC fan motor / Upper DC fan motor	FAN1 / FAN_UP	•	•	Off
Lower DC fan motor	FAN_DOWN		•	
Electronic expansion valve	EXV	•	•	Fully open
Four-way valve	ST	٠	•	Off

6.3 Force Cooling Operation

The force cooling operation helps the refrigerant recovering before removal the water side heat exchanger.

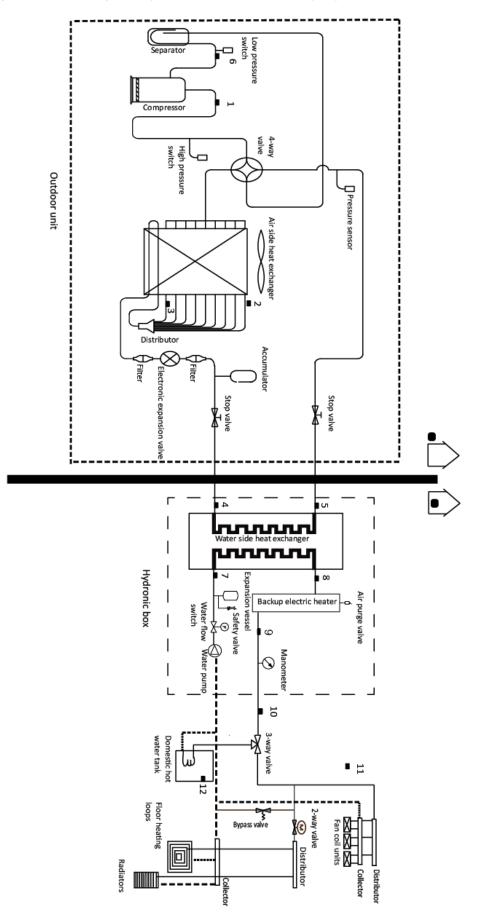
The force cool mode can be ended by pushing the button on the outdoor refrigerant system main PCB named "force-cool" for 5s or this mode will be ended automatic if the system has operated force cool mode for more than 30 minutes.

Table 3-7.4: Component control during force cool operation

Component	Wiring diagram label	4-8kW	10-16kW	Control functions and states
Inverter compressor	COMP	•	•	Runs at force cooling operation rotation speed
DC fan motor / Upper DC fan motor	FAN1 / FAN_UP	•	•	Runs at force cooling operation speed
Lower DC fan motor	FAN_DOWN		•	Kuns at force cooling operation speed
Electronic expansion valve	EXV	•	•	304 (steps)
Four-way valve	ST	•	•	Off

6.4 Fast DHW Operation

Fast DHW operation is used to quickly meet a requirement for domestic hot water when DHW priority has been set on the user interface. Refer to the M-Thermal Split Engineering Data Book Part 3, 8.4 "DHW MODE SETTING Menu".


Domestic hot water demand priority can be ended by changing the switch on controller from "on" to "off".

Wiring diagram 4-8kW 10-16kW **Control functions and states** Component label Inverter compressor • • Controlled according to load requirement COMP • DC fan motor / Upper DC fan motor FAN1 / FAN_UP • Controlled according to outdoor heat exchanger pipe • temperature Lower DC fan motor FAN_DOWN Position (steps) from 0 (fully closed) to 480 (fully Electronic expansion valve EXV • • open), controlled according to discharge superheat • Four-way valve ST • On Tank electric heater TBH • • On

Table 3-7.5: Component control during fast DHW operation

7 Role of Temperature Sensors in Control Functions

Figure 3-7.1: Location of the temperature sensors on M-Thermal Split systems

Notes: 1.

The names and functions of the temperature sensors labelled 1 to 12 in this figure are detailed in Table 3-7.1.

MUNDOCLIMA AEROTHERM V17 - BIBLOC

Table 3-7.1: Names and functions of the temperature sensors

Number	Sensor name ¹	Sensor code	Mode	Control functions
	Distance		Heating	 Electronic expansion valve control² Discharge superheat control
1	Discharge pipe temperature sensor	Тр	Cooling	 Electronic expansion valve control² Outdoor fan control³ Discharge superheat control
2	Outdoor ambient temperature sensor	Т4	Heating	 Compressor startup control⁴ Compressor output control⁵ Electronic expansion valve control² Defrosting operation control⁷ Low pressure protection control⁷ Crankcase heater control⁹
			Cooling	 Compressor startup control⁴ Compressor output control⁵ Electronic expansion valve control² Outdoor fan control³ Crankcase heater control⁹
3	Air side heat exchanger refrigerant outlet temperature	Т3	Heating	 Electronic expansion valve control² Defrosting operation control⁷ Outdoor fan control³
	sensor		Cooling	 Compressor output control⁵ Outdoor fan control³
4	Water side heat exchanger refrigerant inlet (liquid pipe) temperature sensor	T2B	Heating DHW	 Compressor output control⁵
5	Water side heat exchanger refrigerant outlet (gas pipe) temperature sensor	T2	Heating	 Freeze prevention control¹⁰
6	Suction pipe temperature sensor	Th	Heating Cooling	 Electronic expansion valve control²
7	Water side heat exchanger water inlet temperature sensor	Tw_in	Heating Cooling	 Freeze prevention control¹⁰
8	Water side heat exchanger water outlet temperature sensor	Tw_out	Heating Cooling DHW	 Compressor output⁵ and on/off control⁶ Freeze prevention control¹⁰
	De demode de la companya de la		Heating	 Compressor output control⁵ Backup electric heater control DHW priority control¹¹ Auto mode control
9	Backup electric heater water outlet temperature sensor	T1	Cooling	 Compressor output⁵ and on/off control⁶ Auto mode control
			DHW	 Compressor output control⁵ Backup electric heater control DHW priority control¹¹
10	Auxiliary heat source water outlet temperature sensor	T1B	Heating	 Auxiliary heat source control Compressor output control⁵
11	Room temperature sensor	Та	Heating Cooling	 Auto mode control Climate related curve Compressor output control⁵
12	Domestic hot water tank temperature sensor	Τ5	DHW	 Disinfection operation control DHW tank immersion heater control Backup electric heater control Auxiliary heat source control Solar energy kit control Compressor output control⁵ DHW priority control¹¹

Notes:

 Sensor names in this service manual referring to refrigerant flow is named according refrigerant flow during cooling operation refer to Part 2, 3 "Refrigerant Flow Diagrams".

2. Refer to Part 3, 4.5 "Electronic Expansion Valve Control".

3. Refer to Part 3, 4.6 "Outdoor Fan Control".

4. Refer to Part 3, 3 "Startup Control".

5. Refer to Part 3, 4.2 "Compressor Output Control".

6. Refer to Part 3, 1 "Stop Operation".

7. Refer to Part 3, 6.2 "Defrosting Operation".

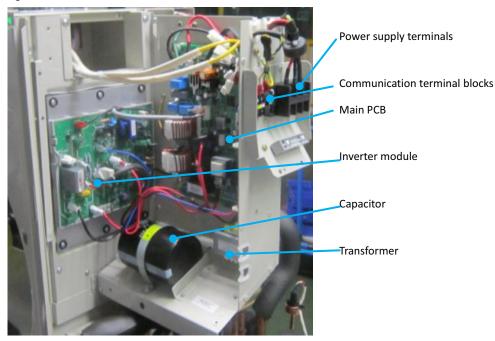
8. Refer to Part 3, 5.2 "Low Pressure Protection Control".

9. Refer to Part 3, 2.1 "Crankcase Heater Control".

10. Refer to Part 3, 2.2 "Freeze Prevention Control".

11. Refer to Part 3, 6.4 "Fast DHW Operation".

Part 3 - Control


Part 4 Diagnosis and Troubleshooting

1 Electric Control Box Layout	
2 PCBs	
3 Error Code Table	
4 Troubleshooting	
5 Appendix to Part 4	

1 Electric Control Box Layout

1.1 Outdoor Unit Electric Control Box Layout Models 4 to 8kW

Figure 4-1.1: electric control box

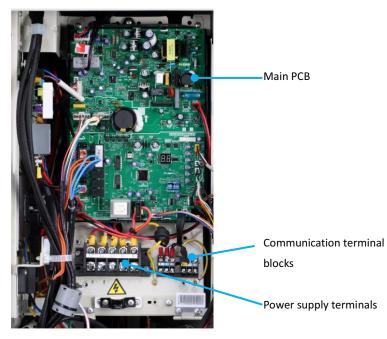

Models 10 to 16kW (1Ph)

Figure 4-1.2: electric control box Side view Main PCB Main PCB Communication terminal blocks Power supply terminals

Figure 4-1.3: electric control box

Models 10 to 16kW (3Ph)

Figure 4-1.4: electric control box front view – top layer

Figure 4-1.5: electric control box front view

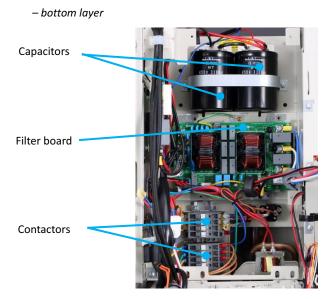


Figure 4-1.6: electric control box side view

Inverter module

Three-phase bridge rectifier

Bridge rectifier terminals block

1.2 Hydronic Box Electric Control Box Layout

Figure 4-1.7: (1Ph) electric control box

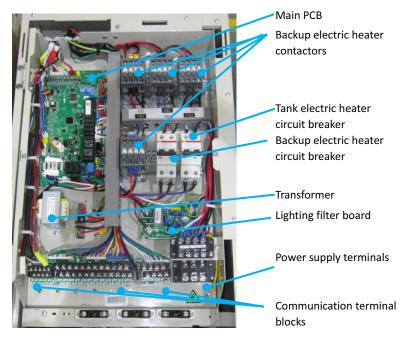
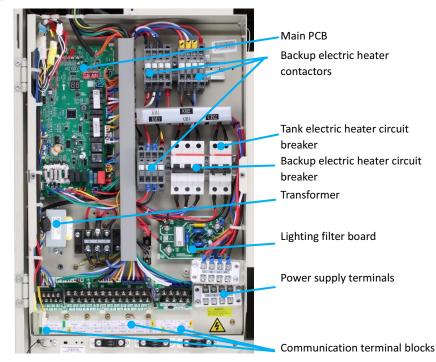
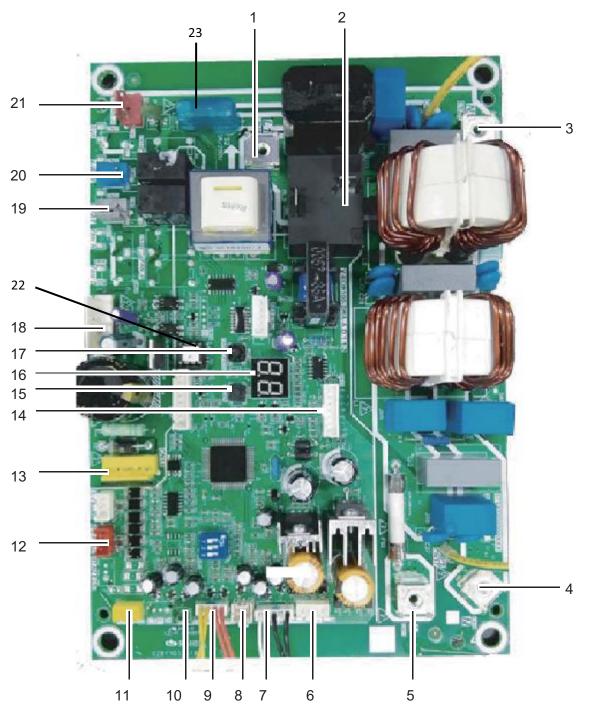



Figure 4-1.7: (3Ph) electric control box

2 PCBs


2.1 Outdoor Unit PCBs

There are three types of main PCB: one for the 4kW to 8kW single phase models, one for the 10kW to 16kW single phase models and one for the 12kW to 16kW three phase models. In addition to the main PCB, all models have an inverter module and the three phase models also have a filter board.

The locations of each PCB in the outdoor unit electric control boxes are shown in Figures 4-1.1 to 4-1.6 in Part 4, 1.1 "Outdoor Unit Electric Control Box Layout".

Models 4 to 8kW

Figure 4-2.1: outdoor unit main PCB¹

Notes:

1. Label descriptions are given in Table 4-2.1.

Label in Figure 4-2.2	Code	Content
1	CN28	Bridge rectifier input connection L to inverter module
2	CN4	Refrigerant system main PCB connection
3	CN27	Bridge rectifier input connection N to inverter module
4	CN10	AC power input N
5	CN11	AC power input L
6	CN24	Transformer power output
7	CN9	White: Outdoor ambient temperature sensor (T4) connection Black: Air side heat exchanger refrigerant outlet temperature sensor (T3) connection
8	CN8	Discharge pipe temperature sensor (Tp) connection
9	CN13	Yellow: High pressure switch connection Red: Low pressure switch connection
10	CN11	Suction pipe temperature sensor (Th) connection
11	CN14	Pressure sensor connection
12	CN29	Communication port for connection to hydronic box main PCB
13	CN18	P/N/+18V power input
14	CN17	Communication port for connection to inverter module
15	SW2	Check button
16	DIS1	Digital display
17	SW1	Force cool button
18	CN34	Fan connection (fan control and power supply to fan motor)
19	CN7	Power supply to crankcase heater
20	CN6	4-way valve drive port
21	CN19	Transformer power input
22	IC23	EEPROM
23	FUSE3	Fuse

Table 4-2.1: outdoor unit main PCB

Figure 4-2.2: outdoor unit inverter module

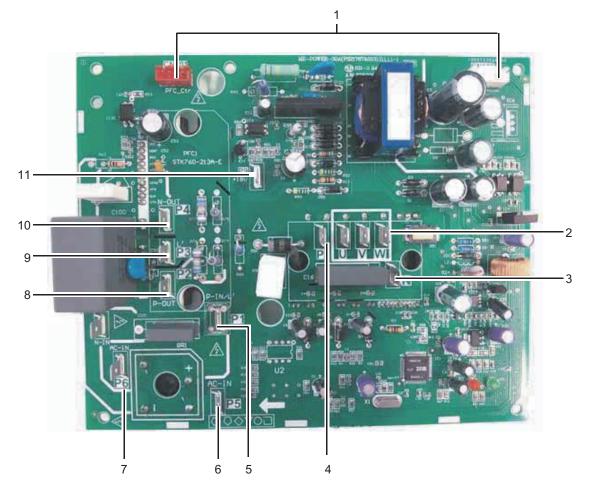
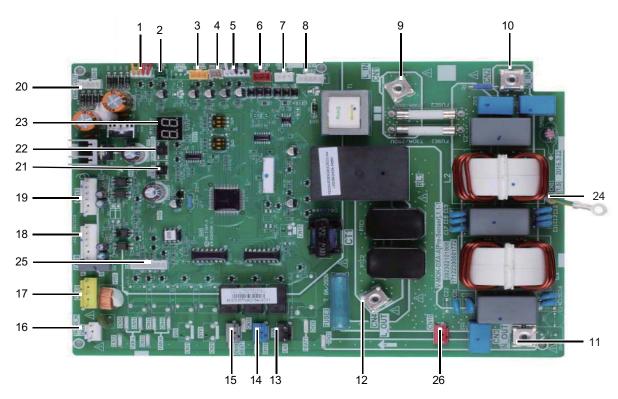



Table 4-2.2: outdoor unit inverter module

Label in Figure 4-2.3	Code	Content
1	CN101,	Connections to main PCB for refrigerant system
	CN105	
2	UVW	Compressor connections
3	N	IPM module input port N
4	Р	IPM module input port P
5	P1	Inductor power input
6	P5	Bridge rectifier input
7	P6	Bridge Rectifier input
8	P2	PFC module output port P
9	Р3	Inductor input output
10	P4	PFC module output port N
11	Р9	+18V power output

Models 10 to 16kW (1Ph)

Figure 4-2.3: outdoor unit main PCB¹

Notes:

1. Label descriptions are given in Table 4-2.3.

Label in Figure 4-2.4	Code	Content
1	CN12	Yellow: High pressure switch connection
1	CN12	Red: Low pressure switch connection
2	CN24	Suction pipe temperature sensor (Th) connection
3	CN28	Pressure sensor connection
4	CN8	Discharge pipe temperature sensor (Tp) connection
5	CN9	White: Outdoor ambient temperature sensor (T4) connection
5	CNJ	Black: Air side heat exchanger refrigerant outlet temperature sensor (T3) connection
6	CN10	Communication port for connection to hydronic box main PCB
7	CN30	Reserved
8	CN22	Electronic expansion valve drive port
9	CN1	Power input L
10	CN2	Power input N
11	CN3	Power output port to bridge rectifier live wire
12	CN4	Power output port for bridge rectifier neutral wire
13	CN7	Reserved
14	CN13	4-way valve drive port
15	CN14	Power supply to crankcase heater
16	CN26	Transformer power input
17	CN18	P/N/+18V power input
18	CN19	Lower fan control port
19	CN17	Upper fan control port
20	CN15	Transformer power output
21	SW2	Check button
22	SW1	Force cool button
23	DIS1	Digital display
24	CN11	Ground wire
25	CN6	Communication port for inverter module
26	CN16	Power supply to hydronic box main PCB
27	IC23	EEPROM
28	FS2	Fuse

MUNDOCLIMA AEROTHERM V17 - BIBLOC

Figure 4-2.4: outdoor unit inverter module

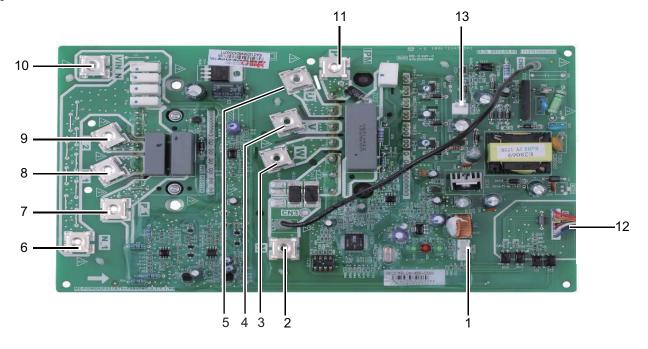
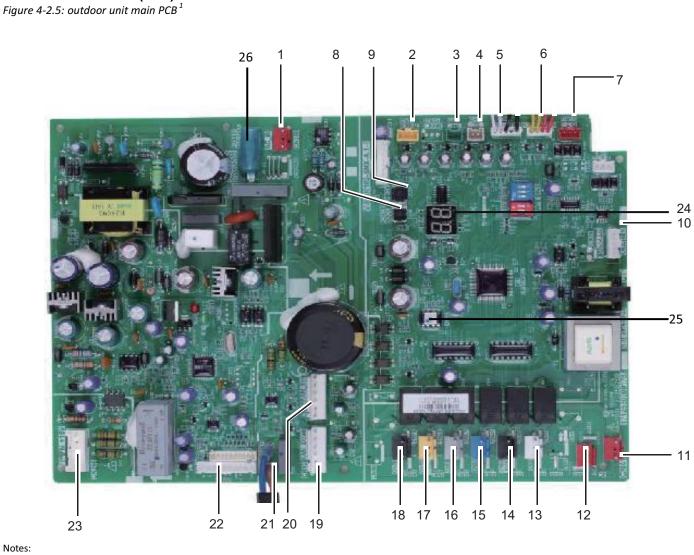
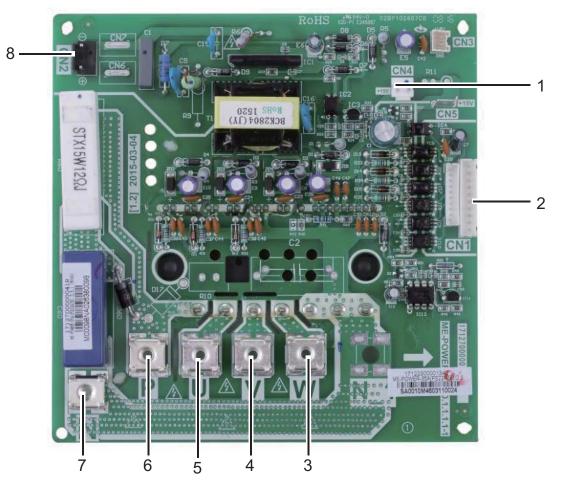


Table 4-2.5: outdoor unit inverter module


Label in Figure 4-2.5	Code	Content	
1	CN2	Reserved	
2	N	IPM module input port N	
3	w		
4	V	Compressor connections	
5	U		
6	N_1	PFC module output port N	
7	P_1	PFC module output port P	
8	L_1	Power input port for PFC inductor	
9	L_2	Power input port for PFC inductor	
10	VIN-N	Input port N for PFC module	
11	Р	IPM module input port P	
12	CN1	Connections to main PCB for refrigerant system	
13	CN6	+15V	

1. Label descriptions are given in Table 4-2.5.

Models 10 to 16kW (3Ph)


201703

Part 4 - Diagnosis and Troubleshooting

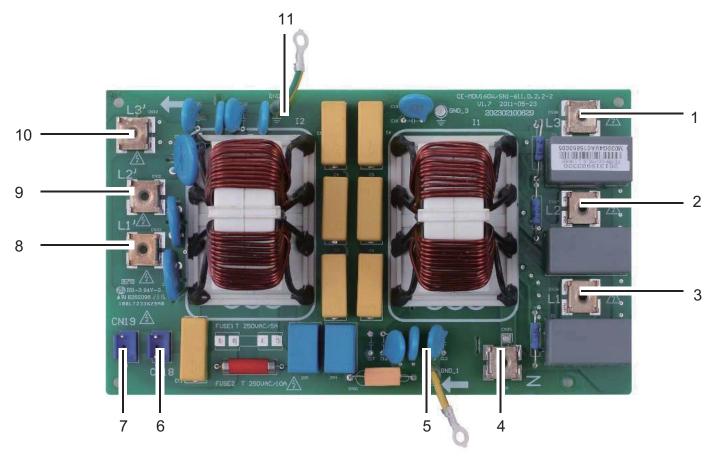
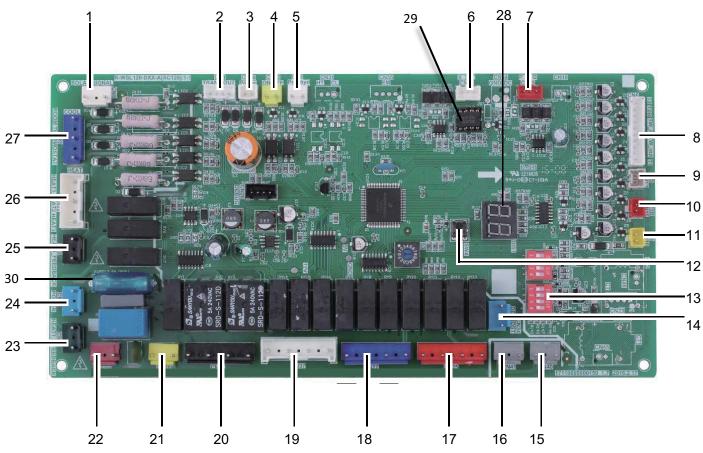

Label in Figure 4-2.5	Code	Content
1	CN250	Power supply for the main PCB
2	CN36	Port for pressure sensor
3	CN4	Port for suction temperature sensor
4	CN8	Port for discharge temperature
		White: Outdoor ambient temperature sensor (T4) connection
5	CN9	Black: Air side heat exchanger refrigerant outlet temperature sensor
		(T3) connection
c.	CNC	Yellow: High pressure switch
6	CN6	Red: Low pressure switch
-	CN110	Communicate port between hydronic box main PCB and outdoor
7	CN10	unit main PCB
8	SW1	Force cool button
9	SW2	Check button
10	CN22	Port for electrical expansion value
11	CN41	Port for power supply
12	CN4	Power supply for hydronic system
13	CN63	PFC control port
14	CN64	Reserved
15	CN65	Port for 4-way valve
16	CN66	Port for electric heating tape
17	CN67	PTC control
18	CN68	Reserved
19	CN19	Port for down fan
20	CN17	Port for up fan
21	CN70, CN71	Power supply port for module
22	CN201	Communication port for IPDU
23	CN205	F Port for voltage check
24	DIS1	Digital Displays
25	IC23	EEPROM
26	FUSE51	Fuse

Figure 4-2.6: outdoor unit inverter module

Label in Figure 4-2.6	Code	Content
1	CN4	+15V port
2	CN1	MCU connection
3	W	
4	V	Compressor connections
5	U	
6	Р	IPM module input port P
7	N	IPM module input port N
8	CN2	Refrigerant system main PCB connection


Figure 4-2.7: outdoor unit filter board

Label in Figure 4-2.7	Code	Content
1	L3	Power supply L3
2	L2	Power supply L2
3	L1	Power supply L1
4	N	Power supply N
5	GND_1	Ground wire
6	CN18	Power supply for load such as 4-way valve and crank heater of compressor
7	CN19	Power supply for refrigerant system main control board
8	L1'	Power filtering output L1
9	L2'	Power filtering output L2
10	L3'	Power filtering output L3
11	GND_1	Ground wire

2.2 Hydronic Box PCB

Figure 4-2.8: Hydronic box main PCB¹

Notes:

1. Label descriptions are given in Table 4-2.8.

MUNDOCLIMA AEROTHERM V17 - BIBLOC

Table 4-2.8: Ma	in PCB for h	ydronic box	
Label in	Label in Code Content		
Figure 4-2.1	couc		
1	CN5	Solar energy signal input connection	
2	CN4	Transformer power output	
3	CN36	Power supply to user interface	
4	CN12	Remote switch connection	
5	CN8	Water flow switch connection	
6	CN14	Refrigerant system main PCB connection	
7	CN19	User interface connection	
		 Water side heat exchanger water outlet temperature sensor (Sensor TW_out) connection 	
		 Water side heat exchanger water inlet temperature sensor (TW_in) connection 	
8	CN6	 Backup electric heater water outlet temperature sensor (T1) connection 	
		 Water side heat exchanger refrigerant outlet (gas pipe) temperature sensor (T2) connection 	
		 Water side heat exchanger refrigerant inlet (liquid pipe) temperature sensor (T2B) connection 	
9	CN13	Domestic hot water tank temperature sensor (T5) connection	
10	CN15	Auxiliary heat source water outlet temperature sensor (T1B) connection	
11	CN16	Room temperature sensor (Ta) connection	
12	SW4	Check button	
13	S1, S2	DIP switches	
14	CN34	Defrost connection	
15	CN40	Anti-freeze electric heater connection (internal)	
16	CN41	Anti-freeze electric heater connection (internal)	
17	CN25	 External heating source connection 	
17	CN25	Operation output connection	
	CN27	 External anti-freeze electric heat tape connection 	
18		 Solar energy signal output connection 	
		Remote alarm connection	
		 External circulator pump connection 	
19	CN37	 Pipe pump connection 	
15		 Mixing station pump connection 	
		2-way valve (SV2) connection	
20	CN24	 3-way valve (SV1) connection 	
		 Reserved (SV3) 	
21	CN28	Internal circulator pump connection	
22	CN20	Transformer power input	
23	CN1	Manual reset thermal cutout connection	
24	CN21	Power input	
25	CN2	Reserved (Feedback port for external temperature switch)	
26	CN22	Backup electric heater connection	
27	CN3	Room thermostat connection	
28	DIS1	Digital display	
29	IC18	EEPROM	
30	FUSE1	Fuse	

2.3 Check Buttons

2.3.1 Refrigerant system SW2 check button

Button SW2 is used to check the parameters of the refrigerant system. Refer to Table 4-2.1 First, press Button SW2 for 3 seconds and the first parameter (operating mode) will be displayed. Then, on each subsequent press, the next parameter is displayed.

Number	Parameters displayed on digital display	Remarks	
1	Operating mode	0: standby; 2: cooling; 3: heating; 4 forced	
		cooling.	
2	Fan speed index	Refer to Note 1	
3	Compressor target speed command from hydronic system (rps)	Actual value = value displayed	
4	Compressor target speed after restriction by the compressor output control (rps)	Actual value = value displayed	
5	Heating mode: Air side heat exchanger refrigerant inlet temperature (°C)	Actual value - value displayed	
5	Cooling mode: Air side heat exchanger refrigerant outlet temperature (°C)	Actual value = value displayed	
		 When no decimal point is displayed: Temperature is ≥ -9°C 	
		 Actual value = value displayed 	
	Outdoor ambient temperature (°C)	 When decimal point is displayed 	
6		between the two digits:	
		 Temperature is ≤ -10°C 	
		• Actual value = value displayed x -10	
		• Example: "1.2" indicates -12°C	
		When the temperature < 100 °C, actual value =	
7	Discharge temperature (°C)	value displayed. When the temperature \geqslant	
		100 °C, actual value = value displayed × 10	
8	Suction temperature (°C)	Actual value = value displayed	
9	EXV position	Steps = value displayed × 8	
10	Compressor current (A)	Actual value = value displayed	
11	DC voltage	Actual value = value displayed × 10	
12	Air side heat exchanger refrigerant pressure (MPa)	Actual value = value displayed	
13	Refrigerant system main PCB software version		
		"nn" is displayed if no error or protection	
14	Most recent error or protection code	events have occurred since start-up	
15			

Table 4-2.9: SW2 system check

Notes:

1. The fan speed index is related to the fan speed in rpm as described in Table 3-5.3 in Part 3, 5.6 "Outdoor Fan Control".

2.3.2 Hydronic system SW4 check button

Button SW4 is used to check the parameters of the hydronic system. Refer to Table 4-2.10. First, press Button SW4 for 3 seconds and the first parameter (operating mode) will be displayed. Then, on each subsequent press, the next parameter is displayed.

Table 4-2.10: SW4 system check

Number	Parameters displayed on digital display	Remarks	
1	Operating mode	0: off; 2: cooling; 3: heating; 5: DHW.	
2	Output requirement before correction (kW)	Actual value = value displayed	
3	Corrected output requirement (kW)	Actual value = value displayed	
4	Hydronic box leaving water temperature (°C)	Actual value = value displayed	
5	Auxiliary heating source leaving water temperature (°C)	Actual value = value displayed	
6	Target leaving water temperature calculated from climate-related curves (°C)	Actual value = value displayed	
7	Room temperature (°C)	Actual value = value displayed	
8	DHW tank temperature (°C)	Actual value = value displayed	
9	Heating mode: Water side heat exchanger refrigerant inlet temperature (°C) Cooling mode: Water side heat exchanger refrigerant outlet temperature (°C)	Actual value = value displayed	
10	Heating mode: Water side heat exchanger refrigerant outlet temperature (°C) Cooling mode: Water side heat exchanger refrigerant inlet temperature (°C)	Actual value = value displayed	
11	Water side heat exchanger water outlet temperature (°C)	Actual value = value displayed	
12	Water side heat exchanger water inlet temperature (°C)	Actual value = value displayed	
13	Outdoor ambient temperature (°C)	 When no decimal point is displayed: Temperature is ≥ -9°C Actual value = value displayed When decimal point is displayed between the two digits: Temperature is ≤ -10°C Actual value = value displayed x -10 Example: "1.2" indicates -12°C 	
14	Backup electric heater first element current (A)	Actual value = value displayed	
15	Backup electric heater second element current (A)	Actual value = value displayed	
16	Most recent code	"" is displayed if no error or protection events have occurred since start-up	
17	Error or protection code previous to most recent code	"" is displayed if no error or protection events have occurred since start-up	
18	Error or protection code previous to 17	"" is displayed if no error or protection events have occurred since start-up	
19	Hydronic box main PCB software version		
20			

2.3.3 Digital Display Output

Table 4-2.11: Digital display output in different operating states

M-Thermal Split system state	Parameters displayed on outdoor unit main PCB DSP1	Parameters displayed on hydronic box main PCB DSP1	
On standby	0	0	00
Normal operation	Running speed of the compressor in rotations per second	Leaving water temperature (°C)	88
Error or protection	Error or protection code	Error or protection code	
System check	Refer to Table 4-2.9	Refer to Table 4-2.10	

3 Error Code Table

Table 4-3.1: Error code table

Error	1: Error code table		
code	Content ¹	Displayed on	Remarks
E0, E8	Water flow failure	User interface and hydronic box	
EU, E8		main PCB	
E1	Phase sequence error	User interface and outdoor unit	Only applies to 3-phase models
		main PCB	
E2	Communication error between outdoor unit and user	User interface and hydronic box	
	interface	main PCB	
E3	Backup electric heater exchanger water outlet temperature sensor error	User interface and hydronic box main PCB	Sensor T1
		User interface and hydronic box	
E4	Domestic hot water tank temperature sensor error	, main PCB	Sensor T5
	Air side heat exchanger refrigerant outlet temperature	User interface and outdoor unit	C
E5	sensor error	main PCB	Sensor T3
E6	Outdoor ambient temperature sensor error	User interface and outdoor unit	Sensor T4
		main PCB	
E9	Suction pipe temperature sensor error	User interface and outdoor unit	Sensor Th
		main PCB	
EA	Discharge pipe temperature sensor error	User interface and outdoor unit main PCB	Sensor Tp
	Water side heat exchanger water inlet temperature	User interface and hydronic box	
Ed	sensor error	main PCB	Sensor Tw_in
		User interface and hydronic box	
EE	Hydronic box EEPROM error	main PCB	
HO	Communication error between outdoor unit main	User interface, outdoor unit main	
110	control chip and hydronic box main control chip	PCB and hydronic box main PCB	
H1	Communication error between outdoor unit main	User interface and outdoor unit	
	control chip and inverter driver chip	main PCB	
H2	Water side heat exchanger refrigerant outlet (gas	User interface and hydronic box	Sensor T2B
	pipe) temperature sensor error Water side heat exchanger refrigerant inlet (liquid	main PCB User interface and hydronic box	
H3	pipe) temperature sensor error	main PCB	Sensor T2
		User interface and hydronic box	
H5	Room temperature sensor error	main PCB	Sensor Ta
Н6, НН	DC fan error	User interface and outdoor unit	
по, пп		main PCB	
H7	Abnormal main circuit voltage	User interface and outdoor unit	
		main PCB	
H8	Pressure sensor error	User interface and outdoor unit	
		main PCB	

Notes:

1. Sensor names in this service manual referring to refrigerant flow is named according refrigerant flow during cooling operation refer to Part 2, 3 "Refrigerant Flow Diagrams".

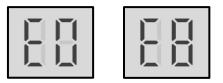
MUNDOCLIMA AEROTHERM V17 - BIBLOC

Table 4-3.1: Error code table (continued)

			1
Н9	Auxiliary heat source water outlet temperature sensor	User interface and hydronic box	Sensor T1B
	error	main PCB	
ЦА	Water side heat exchanger water outlet temperature	User interface and hydronic box	Soncor Two out
HA	sensor error	main PCB	Sensor Tw_out
		User interface and refrigerant	
HF	Refrigerant system EEPROM error	system main PCB	
		User interface and refrigerant	
PO, HP	Low pressure protection	system main PCB	
		User interface and refrigerant	
P1	High pressure protection	system main PCB	
		User interface and outdoor unit	
P3	Compressor current protection	main PCB	
		User interface and outdoor unit	
P4	Discharge temperature protection	main PCB	
	High temperature difference between water side heat		
P5	exchanger water inlet and water outlet temperatures	User interface and hydronic box	
	protection	main PCB	
			Displayed on user interface
P6	Inverter module protection	User interface	when any of L0, L1, L2, L4, L5, L7,
			L8 or L9 occur
LO	Inverter module protection	Outdoor unit main PCB	
L1	DC bus low voltage protection	Outdoor unit main PCB	
L2	DC bus high voltage protection	Outdoor unit main PCB	
L4	MCE error	Outdoor unit main PCB	
L5	Zero speed protection	Outdoor unit main PCB	
L7	Phase sequence error	Outdoor unit main PCB	
	Compressor frequency variation greater than 15Hz		
L8	within one second protection	Outdoor unit main PCB	
	Actual compressor frequency differs from target		
L9	frequency by more than 15Hz protection	Outdoor unit main PCB	
Dh	Weter side boot such anger and fragment the	User interface and hydronic box	
Pb	Water side heat exchanger anti-freeze protection	main PCB	
Pd	High temperature protection of refrigerant outlet	User interface and outdoor unit	
ru	temperature of condenser in cooling mode	main PCB	
99	Water side heat exchanger inlet temperature is higher	User interface and hydronic box	
PP	than outlet temperature in heating mode	main PCB	
•		•	

4 Troubleshooting

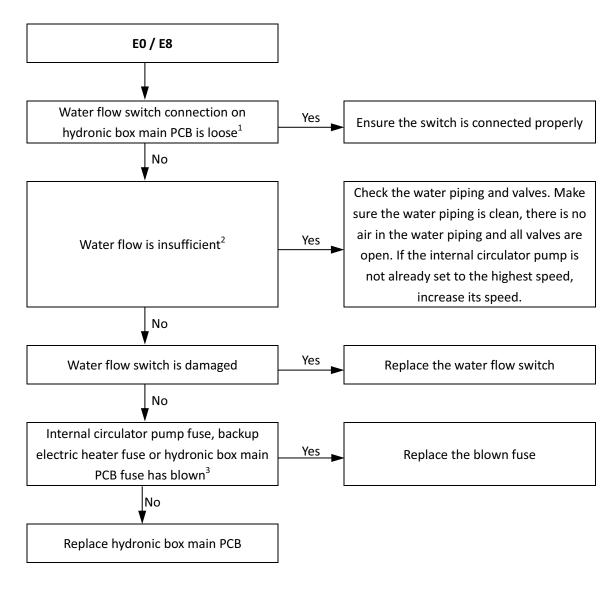
4.1 Warning


Warning

- All electrical work must be carried out by competent and suitably qualified, certified and accredited professionals and in accordance with all applicable legislation (all national, local and other laws, standards, codes, rules, regulations and other legislation that apply in a given situation).
- Power-off the outdoor units before connecting or disconnecting any connections or wiring, otherwise electric shock (which can cause physical injury or death) may occur or damage to components may occur.

4.2 EO, E8 Troubleshooting

4.2.1 Digital display output


4.2.2 Description

- Water flow failure.
- E0 indicates E8 has displayed 3 times. When an E0 error occurs, a manual system restart is required before the system can resume operation.
- M-Thermal Split stops running.
- Error code is displayed on hydronic box main PCB and user interface.

4.2.3 Possible causes

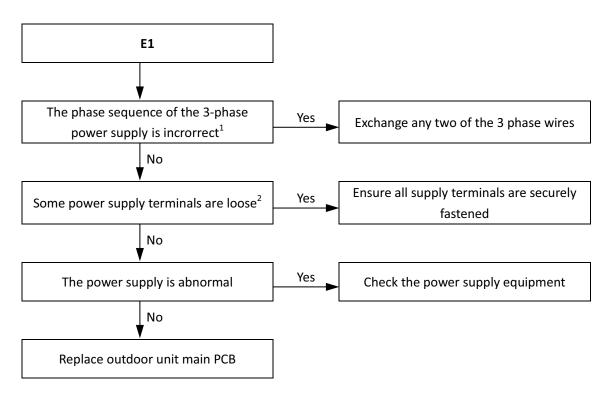
- The wire circuit is short connected or open.
- Water flow rate is too low.
- Water flow switch damaged.

4.2.4 Procedure

- 1. Water flow switch connection is port CN8 on the main PCB for hydronic box (labeled 5 in Figure 4-2.8 in Part 4, 2.2 "Hydronic Box PCB").
- 2. Check water pressure on the manometer. If the water pressure is not > 1 bar, water flow is insufficient. Refer to Figure 2-1.6 and 2-1.7 in Part 2, 1
- "Hydronic Box Layout".The fuse is labeled 30 in Figure 4-2.8 in Part 4, 2.2 "Hydronic Box PCB".

4.3 E1 Troubleshooting

4.3.1 Digital display output


4.3.2 Description

- Phase sequence error.
- Only applies to 3-phase models.
- M-Thermal Split stops running.
- Error code is displayed on outdoor unit main PCB and user interface.

4.3.3 Possible causes

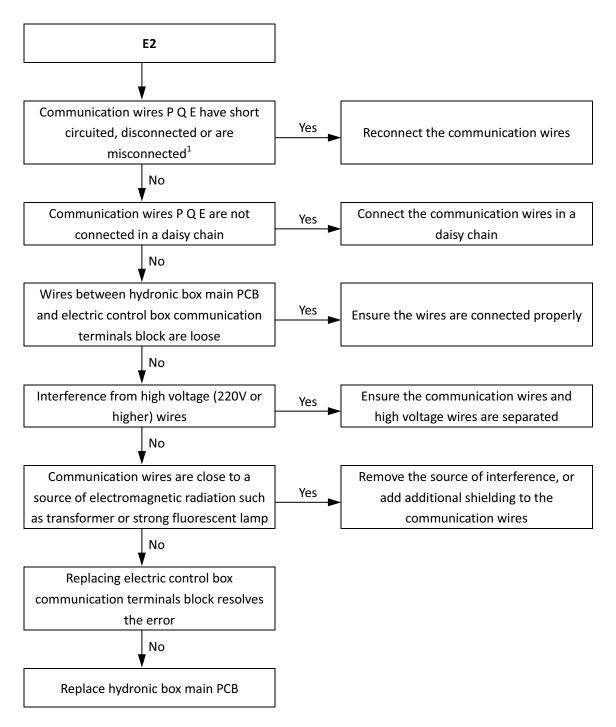
- Power supply phases not connected in correct sequence.
- Power supply terminals loose.
- Power supply abnormal.
- Main PCB damaged.

4.3.4 Procedure

- 1. The A, B, C terminals of 3-phase power supply should match compressor phase sequence requirements. If the phase sequence is inverted, the compressor will operate inversely. If the wiring connection of each outdoor unit is in A, B, C phase sequence, and multiple units are connected, the current difference between C phase and A, B phases will be very large as the power supply load of each outdoor unit will be on C phase. This can easily lead to tripped circuits and terminal wiring burnout. Therefore if multiple units are to be used, the phase sequence should be staggered, so that the current is distributed among the three phases equally.
- 2. Loose power supply terminals can cause the compressors to operate abnormally and compressor current to be very large.

4.4 E2 Troubleshooting

4.4.1 Digital display output

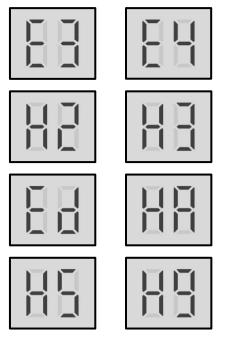


4.4.2 Description

- Communication error between hydronic box and user interface.
- M-Thermal Split stops running.
- Error code is displayed on hydronic box main PCB and user interface.

4.4.3 Possible causes

- Communication wires between hydronic box and user interface not connected properly.
- Communication wiring P Q E terminals misconnected.
- Loosened wiring within electric control box.
- Interference from high voltage wires or other sources of electromagnetic radiation.
- Damaged main PCB or electric control box communication terminals block.

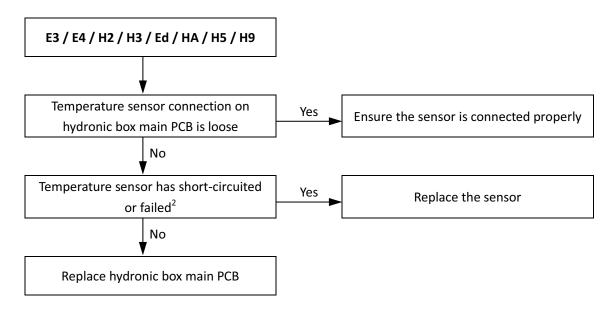


Notes:

1. Measure the resistance among P, Q and E. The normal resistance between P and Q is 120Ω, between P and E is infinite, between Q and E is infinite. Communication wiring has polarity. Ensure that the P wire is connected to P terminals and the Q wire is connected to Q terminals.

4.5 E3, E4, H2, H3, Ed, HA, H5, H9 Troubleshooting

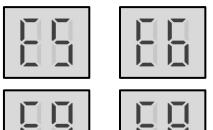
4.5.1 Digital display output


4.5.2 Description

- E3 indicates a backup electric heater water outlet temperature sensor error.
- E4 indicates a domestic hot water tank temperature sensor error.
- H2 indicates a water side heat exchanger refrigerant outlet (gas pipe) temperature sensor error.
- H3 indicates a water side heat exchanger refrigerant inlet (liquid pipe) temperature sensor error.
- Ed indicates a water side heat exchanger water inlet temperature sensor error.
- HA indicates a water side heat exchanger water outlet temperature sensor error.
- H5 indicates a room temperature sensor error.
- H9 indicates an auxiliary heat source water outlet temperature sensor error.
- M-Thermal Split stops running.
- Error code is displayed on hydronic box main PCB and user interface.

4.5.3 Possible causes

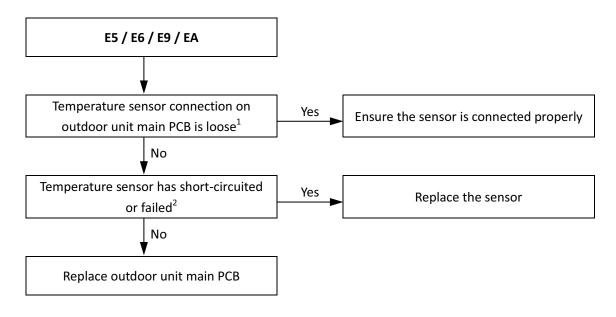
- Temperature sensor not connected properly or has malfunctioned.
- Damaged hydronic box main PCB.


4.5.4 Procedure

- Backup electric heater water outlet temperature sensor, water side heat exchanger refrigerant inlet (liquid pipe) temperature sensor, water side heat exchanger refrigerant inlet (liquid pipe) temperature sensor, water side heat exchanger water inlet temperature sensor and water side heat exchanger water outlet temperature sensor connections are port CN6 on the hydronic box main PCB (labeled 8 in Figure 4-2.8 in Part 4, 2.2 "Hydronic Box PCB"). Domestic hot water tank temperature sensor connection is port CN13 on the hydronic box main PCB (labeled 9 in Figure 4-2.8 in Part 4, 2.2 "Hydronic Box PCB"). Auxiliary heat source water outlet temperature sensor connection is port CN15 on the hydronic box main PCB (labeled 10 in Figure 4-2.8 in Part 4, 2.2 "Hydronic Box PCB"). Room temperature sensor connection is port CN16 on the hydronic box main PCB (labeled 11 in Figure 4-2.8 in Part 4, 2.2 "Hydronic Box PCB").
- 2. Measure sensor resistance. If the resistance is too low, the sensor has short-circuited. If the resistance is not consistent with the sensor's resistance characteristics table, the sensor has failed. Refer to Table 4-5.1 or 4-5.3 in Part 4, 5.1 "Temperature Sensor Resistance Characteristics".

4.6 E5, E6, E9, EA Troubleshooting

4.6.1 Digital display output



4.6.2 Description

- E5 indicates an air side heat exchanger refrigerant outlet temperature sensor error.
- E6 indicates an outdoor ambient temperature sensor error.
- E9 indicates a suction pipe temperature sensor error.
- EA indicates a discharge temperature sensor error.
- M-Thermal Split stops running.
- Error code is displayed on outdoor unit main PCB and user interface.

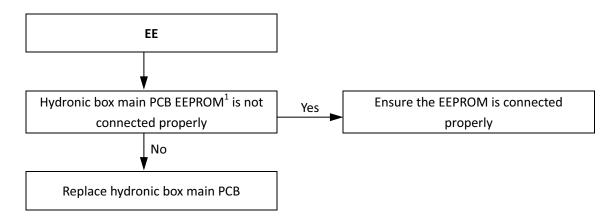
4.6.3 Possible causes

- Temperature sensor not connected properly or has malfunctioned.
- Damaged outdoor unit main PCB.

- 1. Air side heat exchanger refrigerant outlet temperature sensor and outdoor ambient temperature sensor connections are port CN9 on the outdoor unit main PCB (labeled 7 in Figure 4-2.1 in Part 4, 2.1 "Outdoor Unit PCBs", (labeled 5 in Figure 4-2.3 and Figure 4-2.5 in Part 4, 2.1 "Outdoor Unit PCBs"). Discharge pipe temperature sensor connection is port CN8 on the refrigerant system main PCBs (labeled 8 in Figure 4-2.1 and labelled 4 in Figures 4-2.3 and 4-2.5 in Part 4, 2.1 "Outdoor Unit PCBs"). Suction pipe temperature sensor connection is port CN11 on the models 4 to 8kW outdoor unit refrigerant system main PCB (labeled 8 in Figure 4-2.1 in Part 4, 2.1 "Outdoor Unit PCBs"), port CN24 on the models 10 to 16kW (1Ph) outdoor unit refrigerant system main PCB (labeled 2 in Figure 4-2.3 in Part 4, 2.1 "Outdoor Unit PCBs") and port CN4 on the refrigerant system main PCB (labeled 3 in Figure 4-2.5 in Part 4, 2.1 "Outdoor Unit PCBs").
- 2. Measure sensor resistance. If the resistance is too low, the sensor has short-circuited. If the resistance is not consistent with the sensor's resistance characteristics table, the sensor has failed. Refer to Table 4-5.1, and Table 4-5.2 in Part 4, 5.1 "Temperature Sensor Resistance Characteristics".

4.7 EE Troubleshooting

4.7.1 Digital display output


4.7.2 Description

- Hydronic box main PCB EEPROM error.
- M-Thermal Split stops running.
- Error code is displayed on hydronic box main PCB and user interface.

4.7.3 Possible causes

- Hydronic box main PCB EEPROM is not connected properly.
- Hydronic box main PCB damaged.

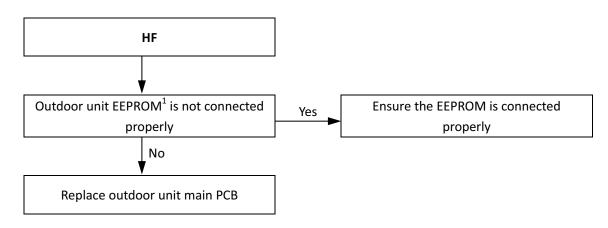
4.7.4 Procedure

Notes:

1. Hydronic box main PCB EEPROM is designated IC18 on the hydronic box main PCB (labeled 29 in Figure 4-2.8 in Part 4, 2.2 "Hydronic Box PCB").

4.8 HF Troubleshooting

4.8.1 Digital display output


4.8.2 Description

- Refrigerant system main PCB EEPROM error.
- M-Thermal Split stops running.
- Error code is displayed on outdoor unit main PCB and user interface.

4.8.3 Possible causes

- Outdoor unit main PCB EEPROM is not connected properly.
- Outdoor unit main PCB damaged.

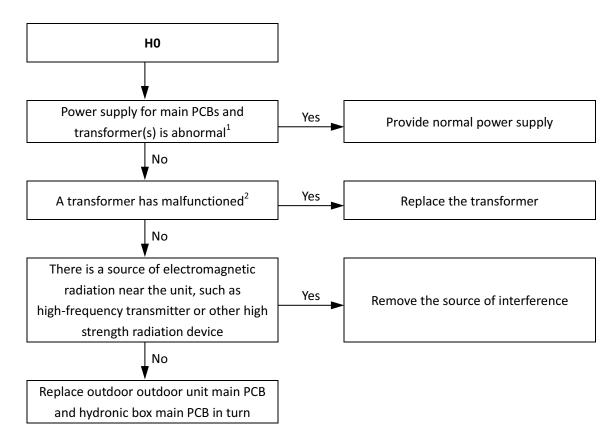
4.8.4 Procedure

Notes:

1. Refrigerant system main PCB EEPROM is designated IC23 on the refrigerant system main PCBs (labeled 22 in Figure 4-2.1 in Part 4, 2.1 "Outdoor Unit PCBs", labeled 27 in Figure 4-2.3 in Part 4, 2.1 "Outdoor Unit PCBs", labeled 25 in Figure 4-2.5 in Part 4, 2.1 "Outdoor Unit PCBs").

4.9 H0 Troubleshooting

4.9.1 Digital display output


4.9.2 Description

- Communication error between outdoor unit main control chip and hydronic box main control chip.
- M-Thermal Split stops running.
- Error code is displayed on hydronic box main PCB, outdoor unit main PCB and user interface.

4.9.3 Possible causes

- Power supply abnormal.
- Transformer malfunction.
- Interference from a source of electromagnetic radiation.
- Outdoor unit main PCB or hydronic box main PCB damaged.

4.9.4 Procedure

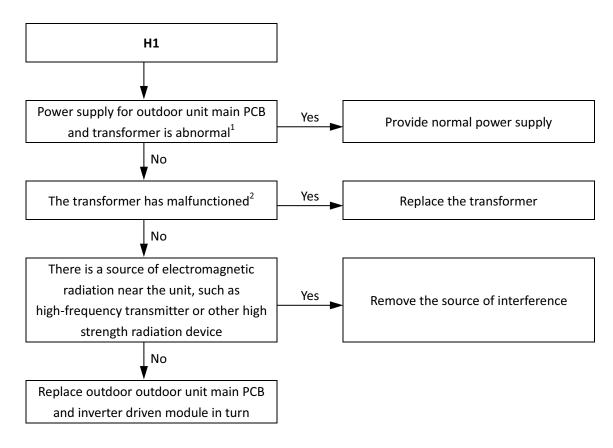
Notes:

Measure the voltages of transformer(s) output ports. If the voltages are not normal, the transformer has malfunctioned.

^{1.} Measure the voltages of transformer(s) input port and on the main PCB. The normal voltage between transformer input port terminals is 220V, between GND and 18V is 18V. If one or more of the voltages are not normal, the power supply for main PCB and transformer is abnormal.

4.10 H1 Troubleshooting

4.10.1 Digital display output

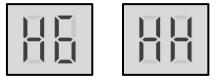

4.10.2 Description

- Communication error between outdoor unit main control chip and the inverter driver chip.
- M-Thermal Split stops running.
- Error code H1 is displayed on outdoor unit main PCB and user interface.

4.10.3 Possible causes

- Power supply abnormal.
- Transformer malfunction.
- Interference from a source of electromagnetic radiation.
- Outdoor unit main PCB or inverter driven module damaged.

4.10.4 Procedure

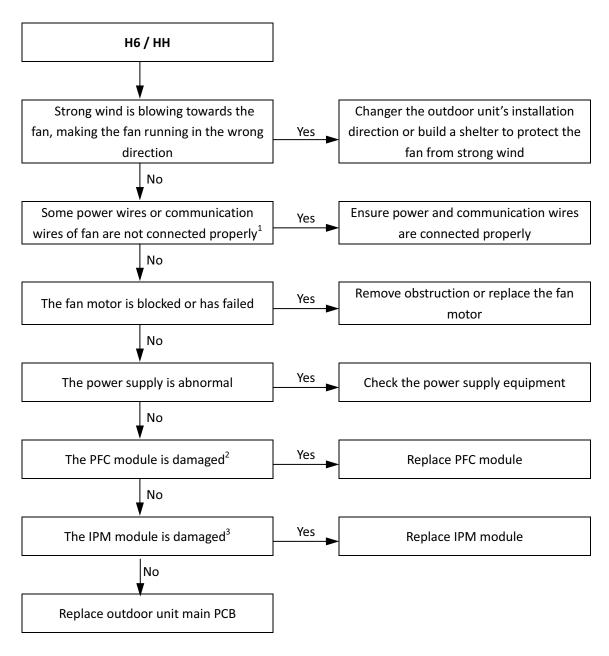


^{1.} Measure the voltages of transformer input port and on the main PCB. The normal voltage between transformer input port terminals is 220V, between GND and 18V is 18V. If one or more of the voltages are not normal, the power supply for main PCB and transformer is abnormal.

Measure the voltages of transformer output ports. If the voltages are not normal, the transformer has malfunctioned.

4.11 H6, HH Troubleshooting

4.11.1 Digital display output


4.11.2 Description

- H6 indicates a DC fan error.
- HH indicates that H6 protection has occurred 10 times in 2 hours. When an HH error occurs, a manual system restart is required before the system can resume operation. The cause of an HH error should be addressed promptly in order to avoid system damage.
- M-Thermal Split stops running.
- Error code is displayed on outdoor unit main PCB and user interface.

4.11.3 Possible causes

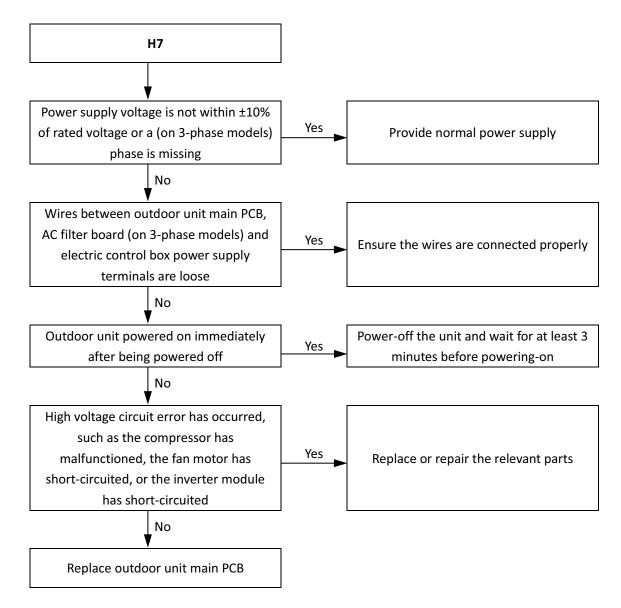
- Power or communication wires not connected properly.
- High wind speed.
- Fan motor blocked or has failed.
- Power supply abnormal.
- PFC module damaged.
- IPM module damaged.
- Main PCB damaged.

4.11.4 Procedure

- 1. Refer to Figures 4-1.1 to 4-1.6 in Part 4, 1.1 "Outdoor Unit Electric Control Box Layout" and to the M-Thermal Split Engineering Data Book, Part 2, 5 "Wiring Diagrams".
- 2. Only applies to single-phase power supply models. Check the voltage between "+" and "-" terminals on the PFC module on the inverter module. The normal range is 277V to 354V. If the voltage is outside this range, the PFC module is damaged.
- 3. Measure the voltage between the DC fan motor power supply's white and black wires. The normal voltage is 15V when the unit is in standby. If the voltage is significantly different from 15V, the IPM module on the inverter module is damaged. The fan connections on each type of refrigerant system main PCB are labelled in Figures 4-2.1, 4-2.3 and 4-2.5 in Part 4, 2.1 "Outdoor Unit PCBs".

4.12 H7 Troubleshooting

4.12.1 Digital display output


4.12.2 Description

- Abnormal main circuit voltage.
- M-Thermal Split stops running.
- Error code is displayed on outdoor unit main PCB and user interface.

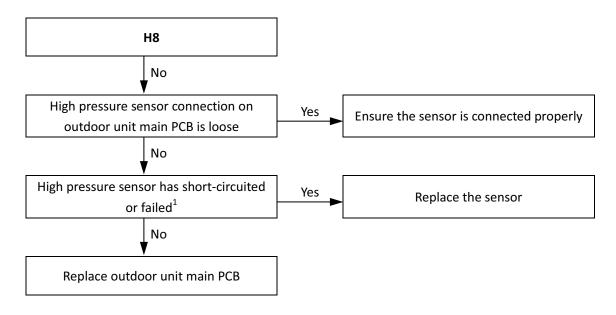
4.12.3 Possible causes

- Power supply voltage not within ±10% of rated voltage or a phase is missing.
- Outdoor unit powered on immediately after being powered off.
- Loosened wiring within electric control box.
- High voltage circuit error.
- Main PCB damaged.

4.12.4 Procedure

4.13 H8 Troubleshooting

4.13.1 Digital display output

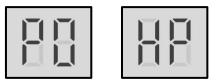

4.13.2 Description

- Pressure sensor error.
- M-Thermal Split stops running.
- Error code is displayed on outdoor unit main PCB and user interface.

4.13.3 Possible causes

- Pressure sensor not connected properly or has malfunctioned.
- Outdoor unit main PCB damaged.

4.13.4 Procedure

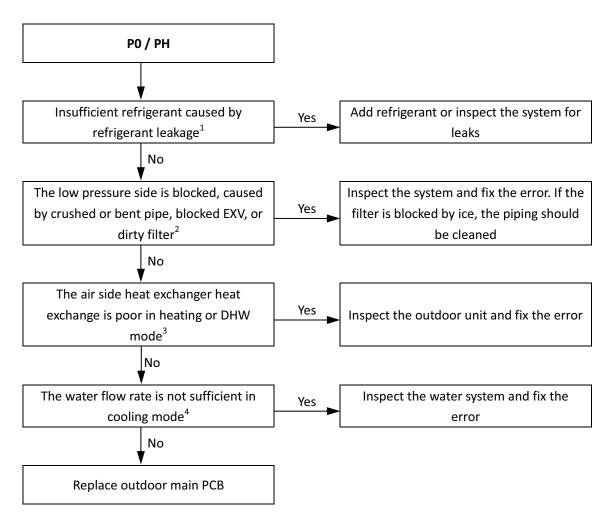


Notes:

1. Measure the resistance among the three terminals of the pressure sensor. If the resistance is of the order of mega Ohms or infinite, the pressure sensor has failed. The pressure sensor connection on each type of outdoor unit main PCB is labeled in Figures 4-2.1, 4-2.3 and 4-2.5 in Part 4, 2.1 "Outdoor Unit PCBs". Refer also to Part 2, 1.1 "Outdoor Unit Layout".

4.14 PO, HP Troubleshooting

4.14.1 Digital display output


4.14.2 Description

- P0 indicates suction pipe low pressure protection. When the suction pressure falls below 0.05MPa, the system displays P0 protection and M-Thermal Split stops running. When the pressure rises above 0.15MPa, P0 is removed and normal operation resumes.
- HP indicates PO protection has occurred 3 times in 60 minutes. When an HP error occurs, a manual system restart is required before the system can resume operation.
- Error code is displayed on outdoor unit main PCB and user interface.

4.14.3 Possible causes

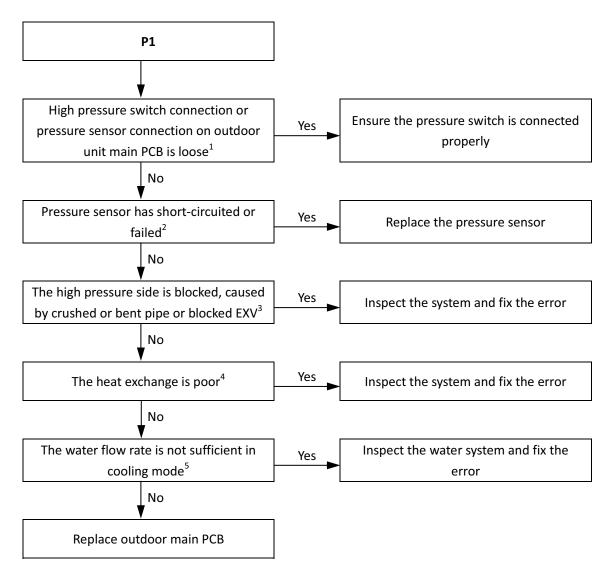
- Low pressure switch not connected properly or has malfunctioned.
- Insufficient refrigerant.
- Low pressure side blockage.
- Poor evaporator heat exchange in heating mode or DHW mode.
- Insufficient water flow in cooling mode.
- Outdoor unit main PCB damaged.

4.14.4 Procedure

- 1. To check for insufficient refrigerant:
 - An insufficiency of refrigerant causes compressor discharge temperature to be higher than normal, discharge and suction pressures to be lower than
 normal and compressor current to be lower than normal, and may cause frosting to occur on the suction pipe. These issues disappear once
 sufficient refrigerant has been charged into the system.
- 2. A low pressure side blockage causes compressor discharge temperature to be higher than normal, suction pressure to be lower than normal and compressor current to be lower than normal, and may cause frosting to occur on the suction pipe. For normal system parameters.
- 3. Check air side heat exchanger, fan(s) and air outlets for dirt/blockages.
- 4. Check water side heat exchanger, water piping, circulator pumps and water flow switch for dirt/blockages.

4.15 P1 Troubleshooting

4.15.1 Digital display output


4.15.2 Description

- Discharge pipe high pressure protection. When the discharge pressure rises above 4.4MPa, the system displays P1 protection and M-Thermal Split stops running. When the discharge pressure falls below 3.2MPa, P1 is removed and normal operation resumes.
- Error code is displayed on outdoor unit main PCB and user interface.

4.15.3 Possible causes

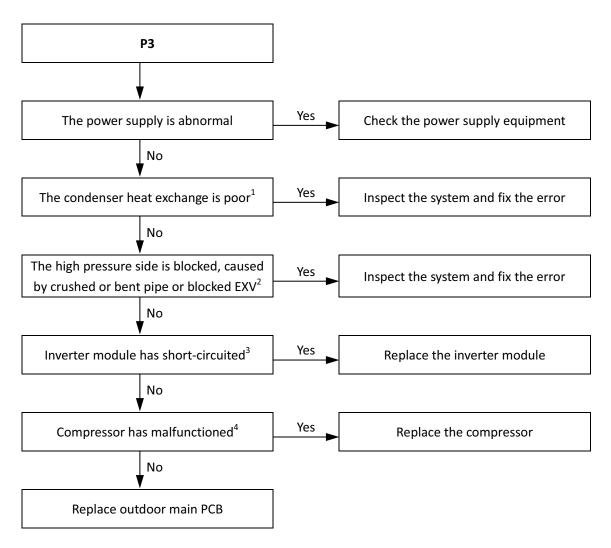
- Pressure sensor/switch not connected properly or has malfunctioned.
- Excess refrigerant.
- System contains air or nitrogen.
- High pressure side blockage.
- Poor condenser heat exchange.
- Outdoor unit main PCB damaged.

4.15.4 Procedure

- High pressure switch connection is port CN13 on the models 4 to 8kW refrigerant system main PCB (labeled 9 in Figure 4-2.1 in Part 4, 2.1 "Outdoor Unit PCBs"), port CN12 on the models 10 to 16kW (1Ph) refrigerant system main PCB (labeled 1 in Figure 4-2.3 in Part 4, 2.1 "Outdoor Unit PCBs") and port CN6 on the models 10 to 16kW (3Ph) refrigerant system main PCB (labeled 6 in Figure 4-2.5 in Part 4, 2.1 "Outdoor Unit PCBs"). Pressure sensor connection is port CN14 on the models 4 to 6kW refrigerant system main PCB (labeled 11 in Figure 4-2.1 in Part 4, 2.1 "Outdoor Unit PCBs"), port CN28 on the models 10 to 16kW (1Ph) refrigerant system main PCB (labeled 11 in Figure 4-2.1 in Part 4, 2.1 "Outdoor Unit PCBs"), port CN28 on the models 10 to 16kW (1Ph) refrigerant system main PCB (labeled 2 in Figure 4-2.3 in Part 4, 2.1 "Outdoor Unit PCBs") and port CN36 on the models 10 to 16kW (3Ph) refrigerant system main PCB (labeled 2 in Figure 4-2.5 in Part 4, 2.1 "Outdoor Unit PCBs") and port CN36 on the models 10 to 16kW (3Ph) refrigerant system main PCB (labeled 2 in Figure 4-2.5 in Part 4, 2.1 "Outdoor Unit PCBs").
- 2. Measure the resistance among the three terminals of the pressure sensor. If the resistance is of the order of mega Ohms or infinite, the pressure sensor has failed.
- 3. High pressure side blockage causes discharge temperature to be higher than normal, discharge pressure to be higher than normal and suction pressure to be lower than normal.
- 4. In heating mode check water side heat exchanger, water piping, circulator pumps and water flow switch for dirt/blockages. In cooling mode check air side heat exchanger, fan(s) and air outlets for dirt/blockages.
- 5. Check water pressure on the manometer. If the water pressure is not > 1 bar, water flow is insufficient. Refer to Figure 2-1.6 and 2-1.7 in Part 2, 1.2 "Hydronic Box Layout".

4.16 P3 Troubleshooting

4.16.1 Digital display output


4.16.2 Description

- Compressor current protection.
- When the compressor current rises above the protection value (Single phase 4/6kW models 18A, single phase 8kW model 20A, single phase 10 to 16kW models 31A, three phase models 15A), the system displays P3 protection and M-Thermal Split stops running. When the current returns to the normal range, P3 is removed and normal operation resumes.
- Error code is displayed on refrigerant system main PCB and user interface.

4.16.3 Possible causes

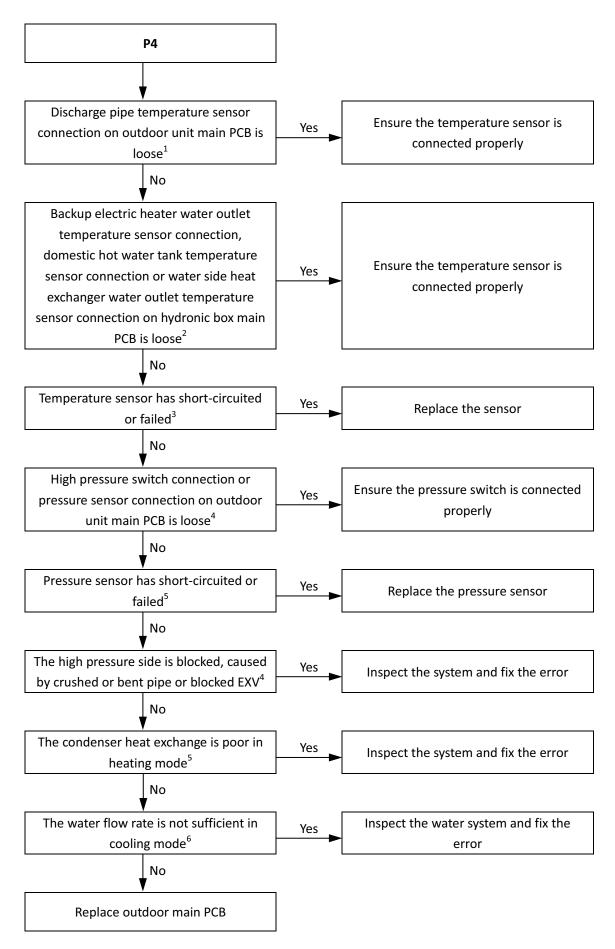
- Power supply abnormal.
- Poor condenser heat exchange.
- High pressure side blockage.
- Inverter module damaged.
- Compressor damaged.
- Main PCB damaged.

4.16.4 Procedure

- 1. In heating mode check water side heat exchanger, water piping, circulator pumps and water flow switch for dirt/blockages. In cooling mode check air side heat exchanger, fan(s) and air outlets for dirt/blockages.
- 2. High pressure side blockage causes discharge temperature to be higher than normal, discharge pressure to be higher than normal and suction pressure to be lower than normal.
- 3. Set a multi-meter to buzzer mode and test any two terminals of P N and U V W of the inverter module. If the buzzer sounds, the inverter module has short-circuited.
- 4. The normal resistances of the inverter compressor are 0.7-1.5Ω among U V W and infinite between each of U V W and ground. If any of the resistances differ from these specifications, the compressor has malfunctioned.

4.17 P4 Troubleshooting

4.17.1 Digital display output


4.17.2 Description

- Discharge temperature protection.
- When the compressor the discharge temperature rises above 115°C, the system displays P4 protection and M-Thermal Split stops running. When the discharge temperature falls below 83°C, P4 is removed and normal operation resumes.
- Error code is displayed on refrigerant system main PCB and user interface.

4.17.3 Possible causes

- Temperature sensor error
- High pressure side blockage.
- Poor condenser heat exchange.
- Main PCB damaged.

4.17.4 Procedure

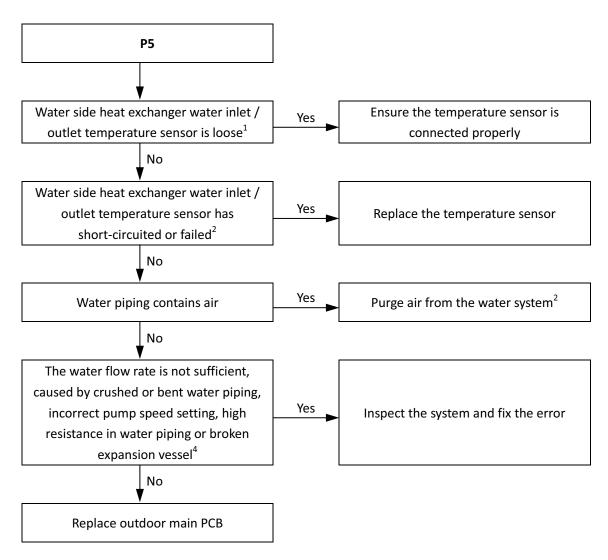
^{1.} Discharge pipe temperature sensor connection is port CN8 on the outdoor unit main PCBs (labeled 8 in Figure 4-2.1 and labelled 4 in Figures 4-2.3 and

4-2.5 in Part 4, 2.1 "Outdoor Unit PCBs").

- 2. Backup electric heater water outlet temperature sensor and water side heat exchanger water outlet temperature sensor connections are port CN6 on the hydronic box main PCB (labeled 8 in Figure 4-2.1 in Part 4, 2.2 "Hydronic Box PCB"). Domestic hot water tank temperature sensor connection is port CN13 on the hydronic box main PCB (labeled 9 in Figure 4-2.1 in Part 4, 2.2 "Hydronic Box PCB").
- 3. Measure sensor resistance. If the resistance is too low, the sensor has short-circuited. If the resistance is not consistent with the sensor's resistance characteristics table, the sensor has failed. Refer to Part 2, 1 "Layout of Functional Components" and to Table 5-5.1 or 5-5.2 in Part 5, 5.1 "Temperature Sensor Resistance Characteristics".
- 4. High pressure switch connection is port CN13 on the models 4 to 8kW outdoor unit main PCB (labeled 9in Figure 4-2.1 in Part 4, 2.1 "Outdoor Unit PCBs"), port CN12 on the models 10 to 16kW (1Ph) outdoor unit main PCB (labeled 1 in Figure 4-2.3 in Part 4, 2.1 "Outdoor Unit PCBs") and port CN6 on the models 10 to 16kW (3Ph) outdoor unit main PCB (labeled 6 in Figure 4-2.5 in Part 4, 2.1 "Outdoor Unit PCBs"). Pressure sensor connection is port CN14 on the models 4 to 8kW outdoor unit main PCB (labeled 11 in Figure 4-2.1 in Part 4, 2.1 "Outdoor Unit PCBs"), port CN28 on the models 10 to 16kW (1Ph) outdoor unit main PCB (labeled 2 in Figure 4-2.3 in Part 4, 2.1 "Outdoor Unit PCBs") and port CN36 on the models 10 to 16kW (3Ph) outdoor unit main PCB (labeled 2 in Figure 4-2.3 in Part 4, 2.1 "Outdoor Unit PCBs") and port CN36 on the models 10 to 16kW (3Ph) outdoor unit main PCB (labeled 2 in Figure 4-2.5 in Part 4, 2.1 "Outdoor Unit PCBs").
- 5. Measure the resistance among the three terminals of the pressure sensor. If the resistance is of the order of mega Ohms or infinite, the pressure sensor has failed.
- 6. High pressure side blockage causes discharge temperature to be higher than normal, discharge pressure to be higher than normal and suction pressure to be lower than normal.
- 7. Check air side heat exchanger, fan(s) and air outlets for dirt/blockages.
- 8. Check the water side heat exchanger, water piping, circulator pumps and water flow switch for dirt/blockages.

4.18 P5 Troubleshooting

4.18.1 Digital display output


4.18.2 Description

- High temperature difference between water side heat exchanger water inlet and water outlet temperatures protection.
- M-Thermal Split stops running.
- Error code is displayed on hydronic box main PCB and user interface.

4.18.3 Possible causes

- Temperature sensor not connected properly or has malfunctioned.
- Water piping contains air.
- Insufficient water flow.
- Hydronic box main PCB damaged.

4.18.4 Procedure

- 1. Water side heat exchanger water inlet temperature sensor and water side heat exchanger water outlet temperature sensor connections are port CN6 on the hydronic box main PCB (labeled 8 in Figure 4-2.8 in Part 4, 2.2 "Hydronic Box PCB").
- 2. Measure sensor resistance. If the resistance is too low, the sensor has short-circuited. If the resistance is not consistent with the sensor's resistance characteristics table, the sensor has failed. Refer to Part 2, 1.2 "Hydronic Box Layout" and to Table 5-5.3 in Part 5, 5.1 "Temperature Sensor Resistance Characteristics".
- 3. Refer to the M-Thermal Split Engineering Data Book, Part 5, 15 "SPECIAL FUNCTIONS".
- 4. Check water pressure on the manometer. If the water pressure is not > 1 bar, water flow is insufficient. Refer to Figures 2-1.7 and 2-1.8 in Part 2, 1.2 "Hydronic Box Layout".

4.19 P6 Troubleshooting for single-phase models

4.19.1 Digital display output

4.19.2 Description

- Inverter module protection.
- M-Thermal Split stops running.
- Error code P6 is displayed on the user interface. Specific error code L0, L1, L2, L4, L5, L7, L8 or L9 is displayed on the outdoor unit main PCB.

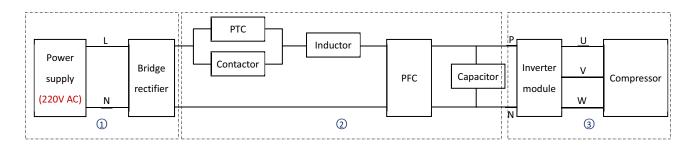
4.19.3 Possible causes

- Inverter module protection.
- DC bus low or high voltage protection.
- MCE error.
- Zero speed protection.
- Phase sequence error.
- Excessive compressor frequency variation.
- Actual compressor frequency differs from target frequency.

4.19.4 Specific error codes for P6 inverter module protection

If a P6 error code is displayed on the user interface, one of the following specific error codes is displayed on the outdoor unit main PCB: L0, L1, L2, L4, L5, L7, L8, L9. Refer to Table 4-4.1.

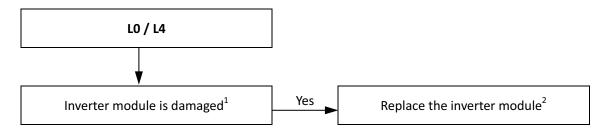
Specific error code	Content
LO	Inverter module protection
L1	DC bus low voltage protection
L2	DC bus high voltage protection
L4	MCE error
L5	Zero speed protection
L7	Phase sequence error
L8	Compressor frequency variation greater than 15Hz within one second protection
L9	Actual compressor frequency differs from target frequency by more than 15Hz protection


Table 4-4.1: Specific error codes for error P6

The specific error codes can also be obtained from the LED indicators LED1/LED2 on the inverter module. Refer to Figure 4-4.2 and Figure 4-2.4 or 4-2.6 in Part 4, 2.1 "Outdoor Unit PCBs".

LED1/2 flashing pattern	Corresponding error					
Flashes 8 times and stops for 1 second, then repeats	L0 - Inverter module protection					
Flashes 9 times and stops for 1 second, then repeats	L1 - DC bus low voltage protection					
Flashes 10 times and stops for 1 second, then repeats	L2 - DC bus high voltage protection					
Flashes 12 times and stops for 1 second, then repeats	L4 - MCE error					
Flashes 13 times and stops for 1 second, then repeats	L5 - Zero speed protection					
Flashes 15 times and stops for 1 second, then repeats	L7 - Phase sequence error					
Flashes 16 times and stops for 1 second, then repeats	L8 - Compressor frequency variation greater than					
riasnes 10 times and stops for 1 second, then repeats	15Hz within one second protection					
Flashes 17 times and stops for 1 second, then repeats	L9 - Actual compressor frequency differs from					
riasnes 17 times and stops for 1 second, then repeats	target frequency by more than 15Hz protection					

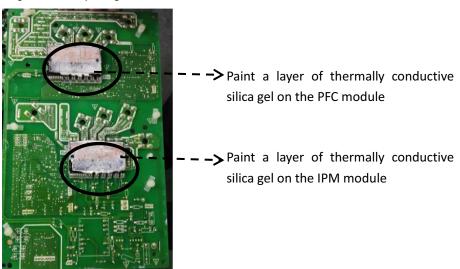
Table 4-4.2: Errors indicated on LED1/2


4.19.5 Principle of DC inverter

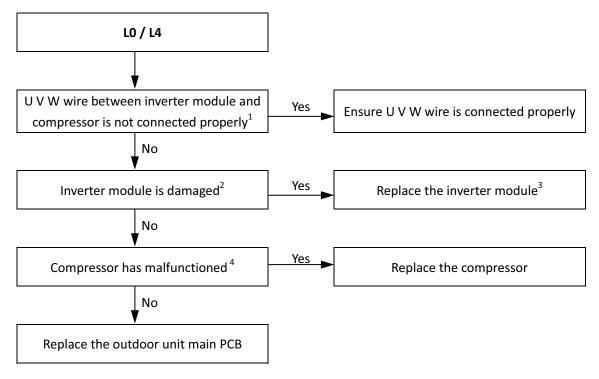
- (1) 220V AC power supply change to DC power supply after bridge rectifier.
- 2 Contactor is open, the current across the PTC to charge capacitor, after 5 seconds the contactor closed.
- (3) The capacitor output steady power supply for inverter module P N terminals. In standby the voltage between P and N terminal on inverter module is 310V DC. When the fan motor is running, the voltage between P and N terminal on inverter module is 380V DC.

4.19.6 L0/L4 troubleshooting

Situation 1: L0 or L4 error appears immediately after the outdoor unit is powered-on

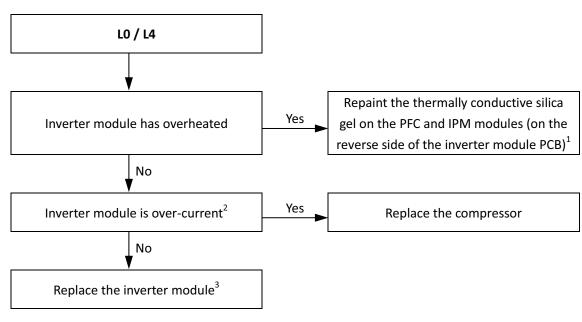


Notes:


1. Measure the resistance between each of U, V and W and each of P and N on the inverter module. All the resistances should be infinite. If any of them are not infinite, the inverter module is damaged and should be replaced. Refer to Figure 4-2.3 or 4-2.5 in Part 4, 2.1 "Outdoor Unit PCBs".

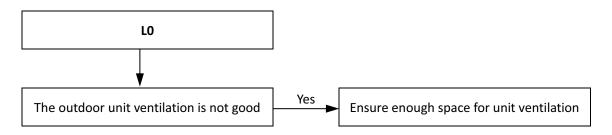
2. When replacing an inverter module, a layer of thermally conductive silica gel should be painted on the PFC and IPM modules (on the reverse side of the inverter module PCB). Refer to Figure 4-4.1.

Figure 4-4.1: Replacing an inverter module



Situation 2: L0 or L4 error appears immediately after the compressor starts up

- 1. Connect the U V W wire from the inverter module to the correct compressor terminals, as indicated by the labels on the compressor.
- 2. Measure the resistance between each of U, V and W and each of P and N on the inverter module. All the resistances should be infinite. If any of them are not infinite, the inverter module is damaged and should be replaced. Refer to Figure 4-2.2 or 4-2.4 in Part 4, 2.1 "Outdoor Unit PCBs".
- 3. When replacing an inverter module, a layer of thermally conductive silica gel should be painted on the PFC and IPM modules (on the reverse side of the inverter module PCB). Refer to Figure 4-4.1.
- 4. The normal resistances of the inverter compressor are 0.7-1.5Ω among U V W and infinite between each of U V W and ground. If any of the resistances differ from these specifications, the compressor has malfunctioned.


Situation 3: L0 or L4 error appears after the compressor has been running for a period of time and the compressor speed is over 60rps

Notes:

- 1. Refer to Figure 4-4.1.
- 2. Use clip-on ammeter to measure the compressor current, if the current is normal indicates the inverter module is failed, if the current is abnormal indicates the compressor is failed.
- 3. When replacing an inverter module, a layer of thermally conductive silica gel should be painted on the PFC and IPM modules (on the reverse side of the inverter module PCB). Refer to Figure 4-4.1.

Situation 4: L0 error appears occasionally/irregularly

4.19.7 L1/L2 troubleshooting

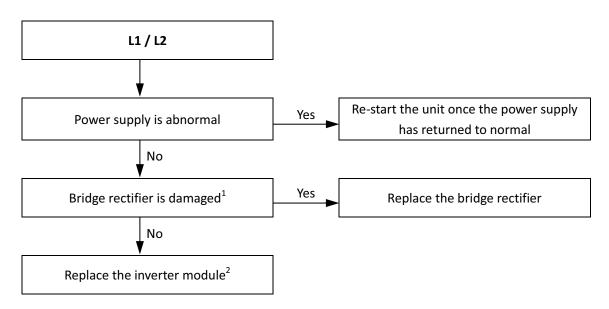
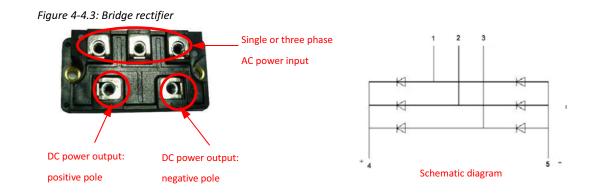
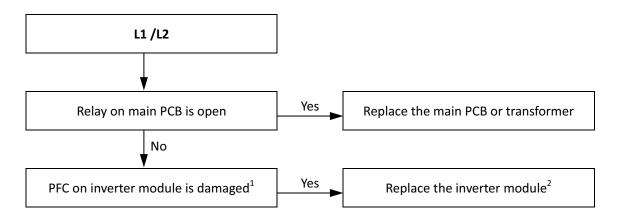

The normal DC voltage between terminals P and N on inverter module is 310V in standby and 380V when the fan motor is running. If the voltage is lower or higher than the normal voltage, the unit displays an L1 or L2 error.

Figure 4-4.2: Inverter module terminals




Situation 1: L1 or L2 error appears immediately after the outdoor unit is powered-on

- 1. Check the bridge rectifier using one of the following two methods (refer to Figure 4-4.3):
 - Method 1: measure the resistance between any two of the 5 bridge rectifier terminals. If any of the resistances is close to zero, the bridge rectifier has failed.
 - Method 2: dial a multimeter to the diode setting:
 - Put the red probe on the DC power output negative terminal (terminal 5) and put the black probe onto each of the AC power input terminals (terminals 1, 2 and 3) in turn. The voltage between terminal 5 and each of terminals 1, 2 and 3 should be around 0.378V. If the voltage is 0, the bridge rectifier has failed.
 - Put the red probe on the DC power output positive terminal (terminal 4), then put black probe onto each of the AC power input terminals (terminals 1, 2 and 3) in turn. The voltage between terminal 4 and each of terminals 1, 2 and 3 should be infinite. If the voltage is 0, the bridge rectifier has failed.
- 2. When replacing an inverter module, a layer of thermally conductive silica gel should be painted on the PFC and IPM modules (on the reverse side of the inverter module PCB). Refer to Figure 4-4.1.

Situation 2: L1 or L2 error appears after the compressor has been running for a period of time and the compressor speed is over 20rps

- 1. If the fan motor is running and the DC voltage between terminals P and N on inverter module is not 380V, the PFC is damaged.
- 2. When replacing an inverter module, a layer of thermally conductive silica gel should be painted on the PFC and IPM modules (on the reverse side of the inverter module PCB). Refer to Figure 4-4.1.

4.20 P6 Troubleshooting for three-phase models

4.20.1 Digital display output

4.20.2 Description

- Inverter module protection.
- M-Thermal Split stops running.
- Error code P6 is displayed on the user interface. Specific error code L0, L1, L2, L4, L5, L7, L8 or L9 is displayed on the outdoor unit main PCB.

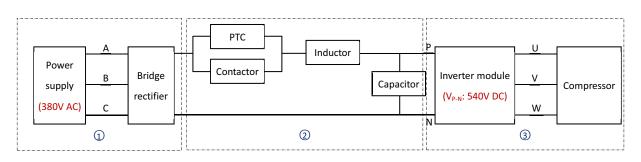
4.20.3 Possible causes

- Inverter module protection.
- DC bus low or high voltage protection.
- MCE error.
- Zero speed protection.
- Phase sequence error.
- Excessive compressor frequency variation.
- Actual compressor frequency differs from target frequency.

4.20.4 Specific error codes for P6 inverter module protection

If a P6 error code is displayed on the user interface, one of the following specific error codes is displayed on the outdoor unit main PCB: L0, L1, L2, L4, L5, L7, L8, L9. Refer to Table 4-4.3.

Specific error code	Content
LO	Inverter module protection
L1	DC bus low voltage protection
L2	DC bus high voltage protection
L4	MCE error
L5	Zero speed protection
L7	Phase sequence error
L8	Compressor frequency variation greater than 15Hz within one second protection
L9	Actual compressor frequency differs from target frequency by more than 15Hz protection

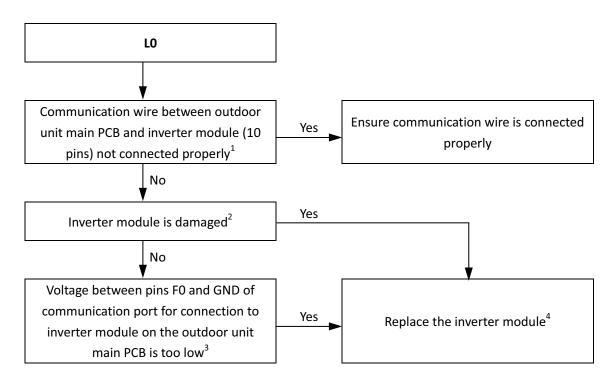

Table 4-4.3: Specific error codes for error P6

The specific error codes can also be obtained from the LED indicators LED1/LED2 on the outdoor unit main PCB. Refer to Figure 4-2.5 in Part 4, 2.1 "Outdoor Unit PCBs".

Table 4-4.4: Errors indicated on LED1/2

LED1/2 flashing pattern	Corresponding error			
Flashes 8 times and stops for 1 second, then repeats	L0 - Inverter module protection			
Flashes 9 times and stops for 1 second, then repeats	L1 - DC bus low voltage protection			
Flashes 10 times and stops for 1 second, then repeats	L2 - DC bus high voltage protection			
Flashes 12 times and stops for 1 second, then repeats	L4 - MCE error			
Flashes 13 times and stops for 1 second, then repeats	L5 - Zero speed protection			
Flashes 15 times and stops for 1 second, then repeats	L7 - Phase sequence error			
Flasher 16 times and store for 1 second then reports	L8 - Compressor frequency variation greater than			
Flashes 16 times and stops for 1 second, then repeats	15Hz within one second protection			
Elasher 17 times and stors for 1 second then repeats	L9 - Actual compressor frequency differs from			
Flashes 17 times and stops for 1 second, then repeats	target frequency by more than 15Hz protection			

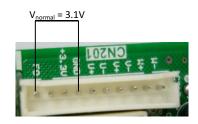
4.20.5 Principle of DC inverter

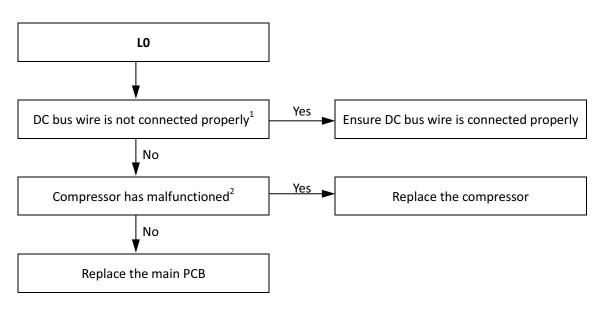

(1) 380-415V AC power supply change to DC power supply after bridge rectifier.

(2) Contactor is open the current across the PTC to charge capacitor, after 5 seconds the contactor closed.

③ The capacitor output steady 540V DC power supply for inverter module P N terminals.

4.20.6 L0 troubleshooting


Situation 1: L0 error appears immediately after the outdoor unit is powered-on


Notes:

- 1. The communication port between outdoor unit main PCB and inverter module is port CN201 on outdoor unit main PCB and port CN1 on inverter module.
- Measure the resistance between each of U, V and W and each of P and N on the inverter module. All the resistances should be infinite. If any of them are not infinite, the inverter module is damaged and should be replaced. Refer to Figure 4-2.2 or 4-2.4 in Part 4, 2.1 "Outdoor Unit Main PCBs".
 The normal voltage between F0 and GND is 3.1V. Refer to Figure 4-4.4.
- When replacing an inverter module, a layer of thermally conductive silica gel should be painted on the IPM module (on the reverse side of the inverter module PCB).

Figure 4-4.4: F0 and GND voltage on CN201

Notes:

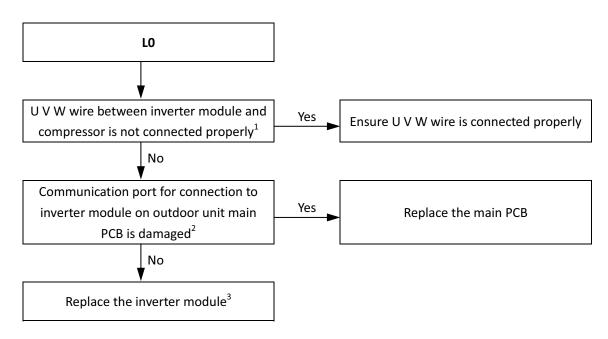

1. The DC bus wire should run from the N terminal on the inverter module, through the current sensor (in the direction indicated by the arrow on the current sensor), and end at the N terminal of capacitor. Refer to Figure 4-4.5.

Figure 4-4.5: DC bus wire connection

N terminal on inverter moduleCurrent sensorN terminal of capacitorImage: A sensor inverter moduleImage: A sensor inverter module<

2. The normal resistances of the inverter compressor are 0.7-1.5Ω among U V W and infinite between each of U V W and ground. If any of the resistances differ from these specifications, the compressor has malfunctioned.

Situation 3: L0 error appears within 2 seconds of compressor start-up

Notes:

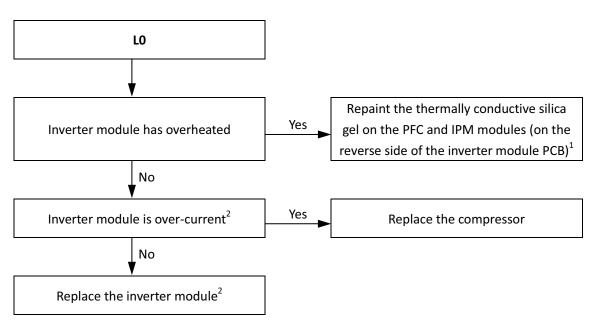
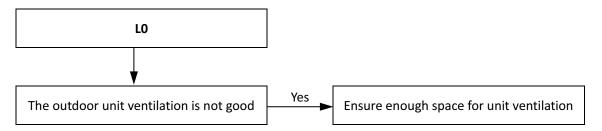

- 1. Connect the U V W wire from the inverter module to the correct compressor terminals, as indicated by the labels on the compressor.
- 2. Measure the voltage between each of W-, W+, V-, V+, U-, U+ and GND when the unit is in standby. The normal voltage should be 2.5V-4V and the six voltages should be same, otherwise the communication terminal has failed. Refer to Figure4-4.6.

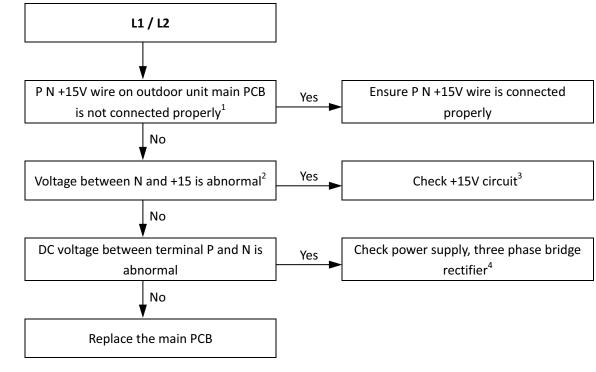
Figure 4-4.6: Connection port for inverter module

3. When replacing an inverter module, a layer of thermally conductive silica gel should be painted on the IPM module (on the reverse side of the inverter module PCB).


Condition 4: L0 error appears after the compressor has been running for a period of time and the compressor speed is over 60rps

Notes:

- 1. When replacing an inverter module, a layer of thermally conductive silica gel should be painted on the IPM module (on the reverse side of the inverter module PCB).
- 2. Use clip-on ammeter to measure the compressor current, if the current is normal indicates the inverter module is failed, if the current is abnormal indicates the compressor has failed.


Situation 5: L0 error appears occasionally/irregularly

4.20.7 L1/L2 troubleshooting

The normal DC voltage between terminals P and N on inverter module is 540V. If the voltage is lower than 300V, the unit displays an L1 error; if the voltage is higher than 800V, the unit displays an L2 error. Refer to Figure 4-4.7.

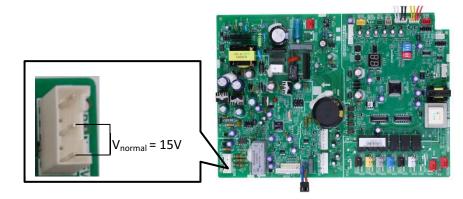
Situation 1: L1 or L2 error appears immediately after the outdoor unit is powered-on

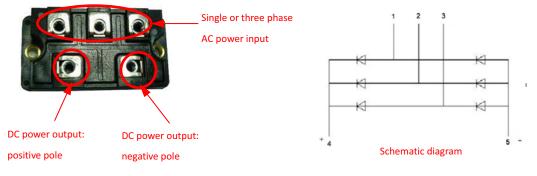
Notes:

1. P N +15V terminal on outdoor unit main PCB. Refer to Figure4-4.7.

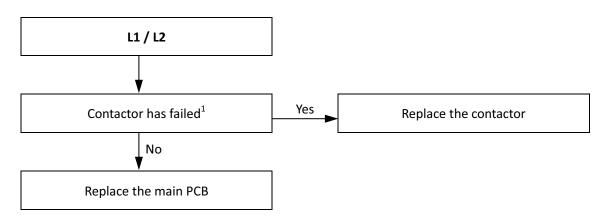
2. Voltage between N and +15. Refer to Figure4-4.8

Figure 4-4.8: P N +15V terminal




Figure 4-4.7: P, N terminals voltage

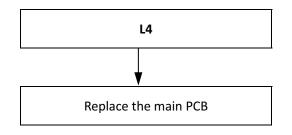
V_{normal} = 540V DC


MUNDOCLIMA AEROTHERM V17 - BIBLOC

- 3. Check the +15V circuit according to corresponding wiring diagram. If CN5 on inverter module output voltage is not +15V means the inverter module is failed. If voltage output of inverter module is +15V means main PCB is failed.
- 4. Check the bridge rectifier using one of the following two methods (refer to Figure 4-4.9):
 - Method 1: measure the resistance between any two of the 5 bridge rectifier terminals. If any of the resistances is close to zero, the bridge rectifier has failed.
 - Method 2: dial a multimeter to the diode setting:
 - Put the red probe on the DC power output negative terminal (terminal 5) and put the black probe onto each of the AC power input terminals (terminals 1, 2 and 3) in turn. The voltage between terminal 5 and each of terminals 1, 2 and 3 should be around 0.378V. If the voltage is 0, the bridge rectifier has failed.
 - Put the red probe on the DC power output positive terminal (terminal 4), then put black probe onto each of the AC power input terminals (terminals 1, 2 and 3) in turn. The voltage between terminal 4 and each of terminals 1, 2 and 3 should be infinite. If the voltage is 0, the bridge rectifier has failed.

Figure 4-4.9: Bridge rectifier

Situation 2: L1 or L2 error appears after the compressor has been running for a period of time and the compressor speed is 20 - 30 rps

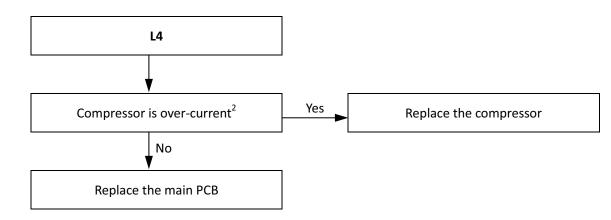


Notes:


1. Check the voltage between the two wires which connect the contactor with the outdoor unit main PCB. If the voltage is 220V AC and the contactor is open, the contactor has failed.

4.20.8 L4 troubleshooting

Situation 1: L4 error appears immediately after the outdoor unit is powered-on


Situation 2: L4 error appears after the compressor has been running for a period of time and the compressor speed is 20 - 30 rps

Notes:

1. Check the voltage between the two wires which connect the contactor with the outdoor unit main PCB. If the voltage is 220V AC and the contactor is open, the contactor has failed.

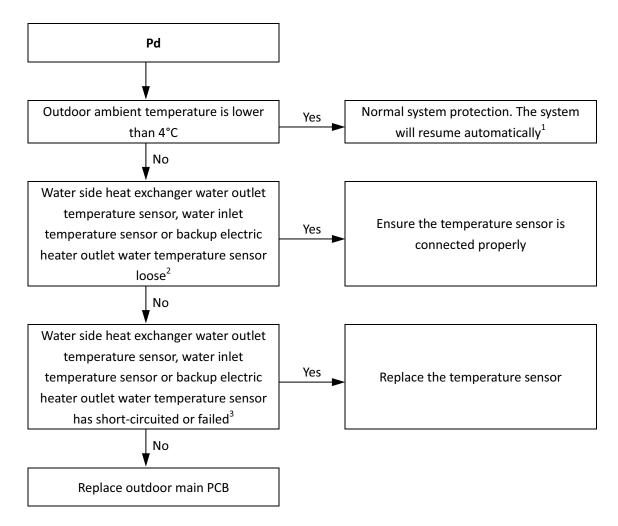
Condition 3: L4 error appears after the compressor has been running for a period of time and the compressor speed is over 60rps

Notes:

1. Re-start the unit, use clip-on ammeter to measure the compressor current, if the current is normal indicates the compressor is failed, if the current is abnormal indicates the main PCB is failed.

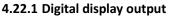
4.21 Pb Troubleshooting

4.21.1 Digital display output


4.21.2 Description

- Water side heat exchanger anti-freeze protection.
- M-Thermal Split stops running.
- Error code is displayed on outdoor unit main PCB and **ANTI.FREEZE** icon is displayed on user interface.

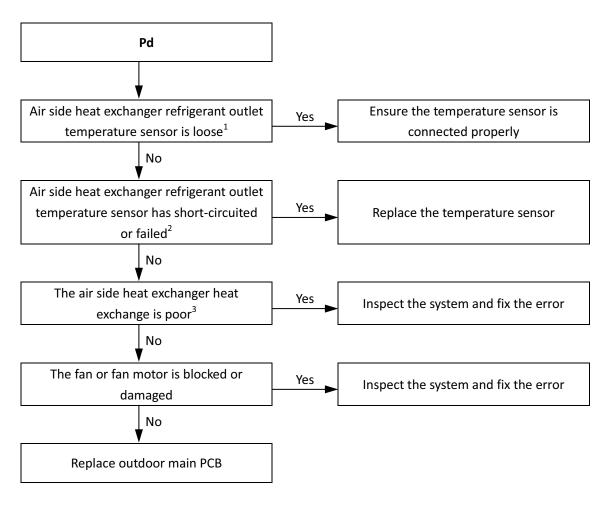
4.21.3 Possible causes


- Normal system protection.
- Temperature sensor not connected properly or has malfunctioned.
- Hydronic box main PCB damaged.

4.21.4 Procedure

- 1. Refer to Part 3, 5.7 "Water Side Heat Exchanger Anti-freeze Protection Control".
- Backup electric heater water outlet temperature sensor, water side heat exchanger water inlet temperature sensor and water side heat exchanger water outlet temperature sensor connections are port CN6 on the hydronic box main PCB (labeled 8 in Figure 4-2.8 in Part 4, 2.2 "Hydronic Box PCB").
- 3. Measure sensor resistance. If the resistance is too low, the sensor has short-circuited. If the resistance is not consistent with the sensor's resistance characteristics table, the sensor has failed. Refer to Part 2, 1.2 "Hydronic Box Layout" and to Table 4-5.3 in Part 4, 5.1 "Temperature Sensor Resistance Characteristics".

4.22 Pd Troubleshooting


4.22.2 Description

- High temperature protection of air side heat exchanger refrigerant outlet in cooling mode. When the air side heat exchanger refrigerant outlet temperature is higher than 62°C for more than 3 seconds, the system displays Pd protection and M-Thermal Split stops running. When the air side heat exchanger refrigerant outlet temperature returns drops below 52°C, Pd is removed and normal operation resumes.
- M-Thermal Split stops running.
- Error code is displayed on outdoor unit main PCB and user interface.

4.22.3 Possible causes

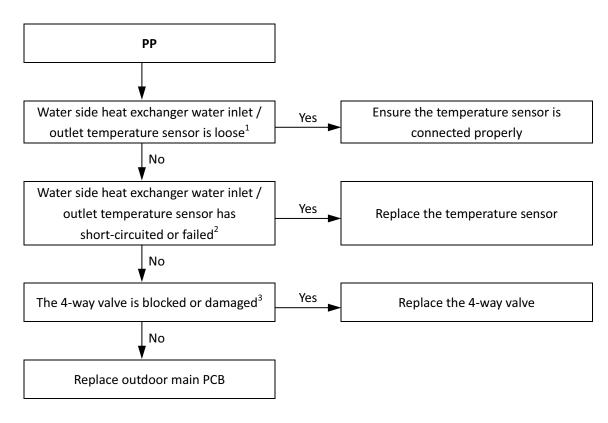
- Temperature sensor not connected properly or has malfunctioned.
- Poor condenser heat exchange.
- Fan motor damaged.
- Hydronic box main PCB damaged.

4.22.4 Procedure

- 1. Air side heat exchanger refrigerant outlet temperature sensor and outdoor ambient temperature sensor connection port is CN9 on the outdoor unit main PCB (labeled 7 in Figure 4-2.1 in Part 4, 2.1 "Outdoor Unit PCBs", (labeled 5 in Figure 4-2.3 and Figure 4-2.5 in Part 4, 2.1 "Outdoor Unit PCBs").
- 2. Measure sensor resistance. If the resistance is too low, the sensor has short-circuited. If the resistance is not consistent with the sensor's resistance characteristics table, the sensor has failed. Refer to Part 2, 1.1 "Outdoor Unit Layout" and to Table 4-5.1 in Part 4, 5.1 "Temperature Sensor Resistance Characteristics".
- 3. Check air side heat exchanger, fan(s) and air outlets for dirt/blockages.

4.23 PP Troubleshooting

4.23.1 Digital display output


4.23.2 Description

- Water side heat exchanger inlet temperature is higher than outlet temperature in heating mode.
- M-Thermal Split stops running.
- Error code is displayed on hydronic box main PCB and user interface.

4.23.3 Possible causes

- Temperature sensor not connected properly or has malfunctioned.
- 4-way valve is blocked or damaged.
- Hydronic box main PCB damaged.

4.23.4 Procedure

Notes:

1. water side heat exchanger water inlet temperature sensor and water side heat exchanger water outlet temperature sensor connections are port CN6 on the hydronic box main PCB (labeled 8 in Figure 4-2.8 in Part 4, 2.2 "Hydronic Box PCB").

- 2. Measure sensor resistance. If the resistance is too low, the sensor has short-circuited. If the resistance is not consistent with the sensor's resistance characteristics table, the sensor has failed. Refer to Part 2, 1.2 "Hydronic Box Layout" and to Table 4-5.1 to 4-5.2 in Part 4, 5.1 "Temperature Sensor Resistance Characteristics".
- 3. Restart the unit in cooling mode to change the refrigerant flow direction. If the unit does not operate normally, the 4-way valve is blocked or damaged.

5 Appendix to Part 4

5.1 Temperature Sensor Resistance Characteristics

Table 4-5.1: Outdoor ambient temperature sensor, water side heat exchanger refrigerant inlet / outlet (liquid / gas pipe) temperature sensor, air side heat exchanger refrigerant out temperature sensor and suction pipe temperature sensor resistance characteristics

Temperature	Resistance	Temperature	Resistance	Temperature	Resistance	Temperature	Resistance
(°C)	(kΩ)	(°C)	(kΩ)	(°C)	(kΩ)	(°C)	(kΩ)
-20	115.3	20	12.64	60	2.358	100	0.6297
-19	108.1	21	12.06	61	2.272	101	0.6115
-18	101.5	22	11.50	62	2.191	102	0.5939
-17	96.34	23	10.97	63	2.112	103	0.5768
-16	89.59	24	10.47	64	2.037	104	0.5604
-15	84.22	25	10.00	65	1.965	105	0.5445
-14	79.31	26	9.551	66	1.896	106	0.5291
-13	74.54	27	9.124	67	1.830	107	0.5143
-12	70.17	28	8.720	68	1.766	108	0.4999
-11	66.09	29	8.336	69	1.705	109	0.4860
-10	62.28	30	7.971	70	1.647	110	0.4726
-9	58.71	31	7.624	71	1.591	111	0.4596
-8	56.37	32	7.295	72	1.537	112	0.4470
-7	52.24	33	6.981	73	1.485	113	0.4348
-6	49.32	34	6.684	74	1.435	114	0.4230
-5	46.57	35	6.400	75	1.387	115	0.4116
-4	44.00	36	6.131	76	1.341	116	0.4006
-3	41.59	37	5.874	77	1.291	117	0.3899
-2	39.82	38	5.630	78	1.254	118	0.3796
-1	37.20	39	5.397	79	1.2133	119	0.3695
0	35.20	40	5.175	80	1.174	120	0.3598
1	33.33	41	4.964	81	1.136	121	0.3504
2	31.56	42	4.763	82	1.100	122	0.3413
3	29.91	43	4.571	83	1.064	123	0.3325
4	28.35	44	4.387	84	1.031	124	0.3239
5	26.88	45	4.213	85	0.9982	125	0.3156
6	25.50	46	4.046	86	0.9668	126	0.3075
7	24.19	47	3.887	87	0.9366	127	0.2997
8	22.57	48	3.735	88	0.9075	128	0.2922
9	21.81	49	3.590	89	0.8795	129	0.2848
10	20.72	50	3.451	90	0.8525	130	0.2777
11	19.69	51	3.318	91	0.8264	131	0.2708
12	18.72	52	3.192	92	0.8013	132	0.2641
13	17.80	53	3.071	93	0.7771	133	0.2576
14	16.93	54	2.959	94	0.7537	134	0.2513
15	16.12	55	2.844	95	0.7312	135	0.2451
16	15.34	56	2.738	96	0.7094	136	0.2392
17	14.62	57	2.637	97	0.6884	137	0.2334
18	13.92	58	2.540	98	0.6682	138	0.2278
19	13.26	59	2.447	99	0.6486	139	0.2223

Temperature	Resistance	Temperature	Resistance	Temperature	Resistance	Temperature	Resistance
(°C)	(kΩ)	(°C)	(kΩ)	(°C)	(kΩ)	(°C)	(kΩ)
-20	542.7	20	68.66	60	13.59	100	3.702
-19	511.9	21	65.62	61	13.11	101	3.595
-18	483.0	22	62.73	62	12.65	102	3.492
-17	455.9	23	59.98	63	12.21	103	3.392
-16	430.5	24	57.37	64	11.79	104	3.296
-15	406.7	25	54.89	65	11.38	105	3.203
-14	384.3	26	52.53	66	10.99	106	3.113
-13	363.3	27	50.28	67	10.61	107	3.025
-12	343.6	28	48.14	68	10.25	108	2.941
-11	325.1	29	46.11	69	9.902	109	2.860
-10	307.7	30	44.17	70	9.569	110	2.781
-9	291.3	31	42.33	71	9.248	111	2.704
-8	275.9	32	40.57	72	8.940	112	2.630
-7	261.4	33	38.89	73	8.643	113	2.559
-6	247.8	34	37.30	74	8.358	114	2.489
-5	234.9	35	35.78	75	8.084	115	2.422
-4	222.8	36	34.32	76	7.820	116	2.357
-3	211.4	37	32.94	77	7.566	117	2.294
-2	200.7	38	31.62	78	7.321	118	2.233
-1	190.5	39	30.36	79	7.086	119	2.174
0	180.9	40	29.15	80	6.859	120	2.117
1	171.9	41	28.00	81	6.641	121	2.061
2	163.3	42	26.90	82	6.430	122	2.007
3	155.2	43	25.86	83	6.228	123	1.955
4	147.6	44	24.85	84	6.033	124	1.905
5	140.4	45	23.89	85	5.844	125	1.856
6	133.5	46	22.89	86	5.663	126	1.808
7	127.1	47	22.10	87	5.488	127	1.762
8	121.0	48	21.26	88	5.320	128	1.717
9	115.2	49	20.46	89	5.157	129	1.674
10	109.8	50	19.69	90	5.000	130	1.632
11	104.6	51	18.96	91	4.849		
12	99.69	52	18.26	92	4.703		
13	95.05	53	17.58	93	4.562		
14	90.66	54	16.94	94	4.426		
15	86.49	55	16.32	95	4.294		
16	82.54	56	15.73	96	4.167]	
17	78.79	57	15.16	97	4.045]	
18	75.24	58	14.62	98	3.927]	
19	71.86	59	14.09	99	3.812	1	

MUNDOCLIMA AEROTHERM V17 - BIBLOC

Table 4-5.3: Water side heat exchanger water inlet / outlet temperature sensor, backup heater exchanger outlet water temperature sensor
and DHW temperature sensor resistance characteristics

Temperature	Resistance	Temperature	Resistance	Temperature	Resistance	Temperature	Resistance
(°C)	(kΩ)	(°C)	(kΩ)	(°C)	(kΩ)	(°C)	(kΩ)
-30	867.29	10	98.227	50	17.600	90	4.4381
-29	815.80	11	93.634	51	16.943	91	4.3022
-28	767.68	12	89.278	52	16.315	92	4.1711
-27	722.68	13	85.146	53	15.713	93	4.0446
-26	680.54	14	81.225	54	15.136	94	3.9225
-25	641.07	15	77.504	55	14.583	95	3.8046
-24	604.08	16	73.972	56	14.054	96	3.6908
-23	569.39	17	70.619	57	13.546	97	3.5810
-22	536.85	18	67.434	58	13.059	98	3.4748
-21	506.33	19	64.409	59	12.592	99	3.3724
-20	477.69	20	61.535	60	12.144	100	3.2734
-19	450.81	21	58.804	61	11.715	101	3.1777
-18	425.59	22	56.209	62	11.302	102	3.0853
-17	401.91	23	53.742	63	10.906	103	2.9960
-16	379.69	24	51.396	64	10.526	104	2.9096
-15	358.83	25	49.165	65	10.161	105	2.8262
-14	339.24	26	47.043	66	9.8105		
-13	320.85	27	45.025	67	9.4736		
-12	303.56	28	43.104	68	9.1498		
-11	287.33	29	41.276	69	8.8387		
-10	272.06	30	39.535	70	8.5396		
-9	257.71	31	37.878	71	8.2520		
-8	244.21	32	36.299	72	7.9755		
-7	231.51	33	34.796	73	7.7094		
-6	219.55	34	33.363	74	7.4536		
-5	208.28	35	31.977	75	7.2073		
-4	197.67	36	30.695	76	6.9704		
-3	187.66	37	29.453	77	6.7423		
-2	178.22	38	28.269	78	6.5228		
-1	168.31	39	27.139	79	6.3114		
0	160.90	40	26.061	80	6.1078		
1	152.96	41	25.031	81	5.9117]	
2	145.45	42	24.048	82	5.7228]	
3	138.35	43	23.109	83	5.5409		
4	131.64	44	22.212	84	5.3655		
5	125.28	45	21.355	85	5.1965		
6	119.27	46	20.536	86	5.0336	1	
7	113.58	47	19.752	87	4.8765	1	
8	108.18	48	19.003	88	4.7251	1	
9	103.07	49	18.286	89	4.5790	1	

ASK FOR MORE INFORMATION Phone: (+34) 93 446 27 81 eMail: info@mundoclima.com

TECHNICAL ASSISTANCE Phone: (+34) 93 652 53 57